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Preface

This book aims to provide a unified treatment of input/output
modelling and of control for discrete-time dynamical systems subject
to random disturbances. The results presented are of wide applica-
bility in control engineering, operations research, econometric
modelling and many other areas.

There are two distinct approaches to mathematical modelling of |

physical systems: a direct analysis of the physical mechanisms that
comprise the process, or a ‘black box’ approach based on analysis of
input/output data. The second approach is adopted here, although of
course the properties of the models we study, which within the lirits
of linearity are very general, are also relevant to the behaviour of
systems represented by such models, however they are arrived at.
The type of system we are interested in is a discrete-time or
sampled-data system where the relation between input and output is
(at least approximately) linear and where additive random dis-
turbances are also present, so that the behaviour of the system must

" be investigated by statistical methods. After a preliminary chapter

summarizing elements of probability and linear system theory, we
introduce in Chapter 2 some general linear stochastic models, both in
input/output and state-space form. Chapter 3 concerns filtering
theory: estimation of the state of a dynamical system from noisy
observations. As well as being an important topic in its own right,
filtering theory provides the link, via the so-called innovations
representation, between input/output models (as identified by data
analysis) and state-space models, as required for much contemporary
control theory.

System identification — modelling from input/output data —is
considered in Chapters 4 and 5. Most current techniques are based
in one form or another either on least-squares or on maximum
likelihood estimation and these procedures are described. A general
approach to identification, due largely to L. Ljung and P. E. Caines, is

ix
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the prediction error formulation, whereby a ‘model’ is thought of as an
algorithm which generates one-step-ahead predictions of the output
given past data. The corresponding model-fitting procedure is
to choose that model within a specified class for which some measure
of the average prediction error is minimized for the given data set.
This gives a new slant on the idea of ‘consistency’: one asks, not
whether the parameter estimates will converge to their ‘true’ values as
the amount of available data increases —a question which is only
relevant in the artificial case when the data was actually generated by
some finitely-parametrized model — but rather whether one’s
identification procedure will succeed in giving the best available
model within the prescribed model set to represent the data. Some
general results along these lines have been provided by Ljung and we
give a somewhat modified version of them in Chapter 5. In the last
two chapters we turn to control topics. Chapter 6 covers the

quadratic cost regulator theory for linear deterministic and stochastic |
systems. As is well known, the deterministic linear regulatoris ‘dual’ to

the Kalman filter in that the so-called matrix Riccati equation occurs

in both contexts. The properties of this equation are studied in detail. .

The Kalman filter appears directly in the optimal stochastic linear
regulator where state estimation is required as part of the control
algorithm, We formulate the separation and certainty-equivalence
principles which encapsulate this idea. In the final chapter, some
topics in adaptive control are discussed. Adaptive control, that is,
simultaneous identification and control of an initially ‘unknown
system’, is a subject which is at the moment in a state of active
development, and we restrict ourselves here to a discussion of the
special but important topics of minimum-variance and self-tuning
control. Conditions under which the self-tuning property is possible
are investigated and one algorithm with guaranteed stability pro-
perties under well-defined conditions is presented. : '
Mathematical modelling and control are of course vast fields of
enquiry and any single-volume treatment of them must necessarily be
highly selective. In this book we do not enter into issues of practical
data analysis such as are admirably covered in, for example, the
influential book of Box and Jenkins. Neither do we discuss in any
detail the numerical properties of the algorithms we present, although

* there has in fact been considerable recent research in this area. Rather,

our objective has been to provide a cohesive account of the main

~ mathematical methods and results underpinning most of the recent

PREFACE ' xi

work in this area. The emphasis is on the unity of the subject, that is,
on the fact that all the models are in some sense interchangeable and
tend to appear in whatever guise is appropriate to the problem at
hand, be it model fitting, prediction, regulation, or any other.
In taking this point of view we make much more systematic use of
linear system theory than is customary in ‘time series analysis’.

This book is intended both to provide suitable material for
postgraduate courses on the stochastic aspects of control systems,
and to serve as a reference book for researchers in the field of
stochastic systems. It has therefore been organized so that it can be
read on several levels. A reader new to the field may wish to stick to
the main body of the text, where intricate arguments are avoided; here
certain results are merely stated (though we have made an effort in
such cases to provide sufficient explanation that their significance can
be appreciated). On the other hand, a reader with more experience
should treat the appendices, where the more difficult proofs are to be
found, as an integral part of the text.

We have tried to make our treatment as self-contained as possible.
Our coverage of background topics is, however, brisk, and readers
will undoubtedly benefit from some knowledge of probability,
statistics, stochastic processes and linear system theory, as provided,
for example, by the references at the end of Chapter 1.

This book grew out of our involyement in teaching and research in
the Control Group at Imperial College, London. Our first debt of
gratitude is to David Mayne, who has been largely responsible for
creating, in the Control Group, an environment in which projects
such as this can flourish, as well as for initiating the courses on which
much of the material of this book was originally based. We would like
to dedicate the book to him as a token of affection and esteem. We are
indebted to Martin Clark and again to David Mayne for advice and
discussions over the years, and to many other colleagues at Imperial
College and elsewhere whose work has influenced our thinking. Of
course, none of them can be blamed for the consequences. Doris
Abeysekera has played a quite exceptional role in the creation of this
book by typing, at great speed and often under considerable
pressure, successive drafts of the various chapters, only to be con-

‘fronted with irritating requests for additions and alterations. We

are grateful to the Leverhulme Trust for a research grant to one of
us (MHAD) which facilitated completion of the book. Finally, a word
of thanks to David Cox for including this book in the Monographs on
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* Statistics and Applied Probability series under his editorship, and to
our editors at Chapman and Hall for their collaboration and for
tolerating what we modestly think must be a record-breaking series of
missed deadlines.

M. H. A. Davis
R. B. Vinter
London,
September 1984

CHAPTER 1

Probability and linear system
theory. |

This book is concerned with the analysis of discrete-time linear
systems subject to random disturbances. This introductory chapter is
designed to present the main results in the two areas of probability
and linear systems theory as required for the main developments of
the book, beginning in Chapter 2. A ‘
. Section 1.1. on probability is divided into three subsections dealing
with distributions and random variables, stochastic processes, and
convergence of stochastic sequences. In the space available it'is not
possible to give a complete and self-contained account of these topics,
which are in any case discussed at length in many other texts. The
intention here is only to summarize the main ideas and results needed
later in the book. Suggestions for further reading are contained in
the Notes at the end of the chapter.

Section 1.2 covers the elements of linear system theory with

-particular emphasis on those aspects relevant to linear filtering and

quadratic cost stochastic control. The section centres around the
concepts of controllability and observability together with refine-
ments of them in the form of stabilizability and detectability. The
concepts are characterized and interrelated. Along the way there is
discussion of pole assignment. The treatment is largely self-contained
in that almost all results are proved in full, but the reader with little

backgroundin linear systems theory will probably none theless wishto -

consult the suggested references to complement the coverage here.

1.1 Probability and random processes

1.1.1 Distributit_ms and random variables

A random variable X is the numerical outcome of some experiment the
result of which cannot be exactly predicted in advance. Mathemati-

1
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2 PROBABILITY AND LINEAR SYSTEM THEORY

cally the properties of X are specified by a distribution function, F,
which defines the probability that in a single trial the value of X will
fall in a given interval of the real line. Symbolically,

_ F(a)=P[X <a] (1.1.1)
so that _
P[a<X <b]=F(b)— F(a) 12

for arbitrary a, beR. Thus F is a non-decreasing function with
F(— 00)=0, F(co} = 1. It is left-continuous (this is due to the choice
of < rather than < in (1.1.1)), and the jump F(a +)— F(a) is the
probability that X takes exactly the value a. Two important special
cases are the following.

(a) Discrete random variables Here X takes on one of a finite or
countable number of values x,,x,,... with corresponding proba-

bilities py, p;, ..., which must satisfy

D; 2 09 Z bi= L.
The distribution function is
Fla)= Z Di

which is a piecewise-constant function with a jump of height p; at x;;
see Fig. 1.1 :

(b) Continuous random variables These are random variables
(r.v.s) whose distribution function F is absolutely continuous, i.e. can
be written

Fla) = f © fodx

for some function f, the density function of X. f must satisfy

f(x)ZO,r 9 dx=1.

v

AL e

b x H X4
Fig. 1.1

1.1 PROBABILITY AND RANDOM PROCESSES 3

In view of (1.1.2) we then have
.
PlasX <b]l= J fix)dx. (1.1:3)

Since F is continuous the probability that X takes exactly any
particular value a is zero, so it is immaterial whether the endpoints of
the interval [a, b] are included or excluded in (1.1.3).

Animportant parameter of a random variable is its expectation or
mean value EX. This is normally defined for discrete and continuous
random variables respectively as follows:

EX=Y x;p; (discrete case) (1.1.4)

EX = Jw‘ xf(x)dx  (continuous case)  (1.1.5)

-~ 0
We can subsume these in a single formula as a Stieltjes integral
with respect to the distribution function F. For positive-valued
continuous functions g we define ’

r g(x)dF(x):= lim 22 g(x,t,,)<F(£‘i;—1>—F<—l%>>, (1.1.6)
0 n—oo g=—22n 2 2

where xj , is any minimizing point in the interval [k/2", (k + 1)/2"], i.e.
any point such that
gixt)<g(x), k/2"<x<(k+1)/2"

The sum on the right is increasing as n increases and the limit may be
finite or + co. For a general continuous function g we define

v, [ ifg(x)20
A if g(x) <0

g~ (x):=g"(x) — g(x)
and

f g(>€)dF(>C)=foo .04’(36)dl’(>€)--r0 9~ (x)dF(x)

— o -

as long as both integrals on the right are finite, which is the case if and
only if '

r lg(x)|dF(x) < oo, (1.1.7)

— 00



4 PROBABILITY AND LINEAR SYSTEM THEORY

since
|g0x) = g () + 97 (x): |
It is easily seen that with the definition (1.1.6), the formula

EX = r x dF(x) (1.1.8)

-

agrees with (1.1.4) and (1.1.5) in those special cases, and this is our
general definition of the expectation. In accordance with (1.1.7), for
EX to be well defined we require that

fw |x| dF(x) < c0.

Random variabies whose distribution has this property are called

integrable; thus only for integrable r.v.s X is the expectation EX well
defined.
If g is a real-valued function and X is anr.v. then g(X) isar.v. whose

expectation, if defined, is
o

Eg(X)= J g(x)dF(x).

g(X)is integrable if (1.1.7) is satisfied. It is not necessary for g(+) to be
continuous for this to be valid but if g is not continuous (1.1.6) may
require some modification. This technical point need not however
detain us here. ‘

The expectation measures the average value of X to be expected in
a long series of trials. A measure of the spread around the mean value
is given by the variance, defined by

Leed

var(X) = E(X — EX)? = J (x — EX)2dF(x).

The standard deviation of X is
o = /var(X).

This has the same units as X. The properties of var(X) are
summarized in the following proposition.

Proposition 1.1.1
Suppose X? is integrable, i.e. EX* < co. Then:

1.1 PROBABILITY AND RANDOM PROCESSES 5
(a) X is integrable, and hence var(X) is well defined; it is given by

var(X) = EX? — (EX)~.

We therefore say that X is a finite variance random variable if

EX? < o0.
(b) (Chebyshev inequality) For any positive constant a,

P[X|>al<(1/a®)EX? .
{c) Define a function v:R— R by
v(b) = E(X — b)%.

Then b(b) takesits minimum at b = EX, and the minimum value is
var(X).
(d) EX?=0if and only if P[X =0] = 1.

PROOF It is evident from (1.1.6) that if g, h are functions such that

h(x) = g(x) for all x then El(X)= Eg(X). For part (a), take g(x)=
x|, A(x) =1+ x? to conclude that E|X|<1+ EX2< 0. Thus X is
integrable. For part (b), define g(x) =0 for |x| < a and g(x) = a? for
|x|>a and take h(x)=x2 Then h(x)=g(x) and Eg(X)=
a?P[|X| > a]. The result follows. For any constant b we have

E[X—b]2=J

o0

(x— b)?2 dF(x)

=Jw x2dF(.x)—2bJ“uo x dF(x)

-0 —w

+b? Jw dF(x)

=EX?—2bEX + b~

This last expression is minimized over b at b = EX; when b = EX it is

-

-equal to var(X) and coincides with the expression given at part (a).

Turning to part (d), to say that P[X = 0] = 1 is equivalent to saying
that the distribution function F of X is given by F(a)=0,a <0 and
F(a)=1,a>0. It follows from (1.1.6) that EX2=0 if X has this
distribution. Conversely, if EX2 =0 then for any number a >0

0= r x?dF(x) 2 f%xz dF(x) zazrdf’(x)= a*P[X > a]>0.

= o0 a a

A~ o~ N N N
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6 PROBABILITY AND LINEAR SYSTEM THEORY
This shows that P[X>a]=0 for any a>0 and hence that
P[X >0]=0.

A similar argument shows that P[X < 0] =0; thus P[X =0] = 1.

A random n-vector X =(X,,...,X,)" is a collection of » random
variables X ,,...,X,. To examine its probabilistic behaviour it is not
sufficient to know the distribution of each X ; because this information
does not specify how the components interact. In general one needs
to know the joint distribution function F(ay,...,a,) which specifies
the probabilities of cvents via the formula

P[X,<ay,....X,<a]=Fla,,...,a,).
The random variables X ,..., X, are independent if

F(al:”-’an) = Fl(al)FZ(az)"'Fn(an)

where F; is the distribution of X;. This is the only case in
which knowledge of F,..., F, suffices to determine F. On the other
hand, knowledge of F always determines the distribution of each X;
(the so-called marginal distribution) since, for example,

Fl(a1)=P[X1 <a1,X2< OO,...,X,,< OO]
= F(a,, ©0,..., ).
X,...,X,have a joint' density function f if
at an
F(ay,...,a,)= J‘ j flxq,.. e x)dx,...dx,
If the X; are independent and X; has density function fj then
f(xx EER ,X,,) = fl(xl)fZ(XZ) e fn(xn)'

If g: R"— R is a continuous function then the expectation Eg(X) can
be defined using Stieltjes integrals in a way that agrees with the usual
expression

Eg(x)ijoj r_o GOt ems ) (60 %) Ay .,

- valid when X has joint density f. We give the definition for the

bivariate case n = 2; for n> 2 it is similar but notationally cumber-

1.1 PROBABILITY AND RANDOM PROCESSES 7

some. For n=2 we have
Pla, <X1 <b1,a2_<_X2 <b,]=F(by,b;) — F(b;,a,)
— F(ay,by) + F(ay, ay).
Let us denote this expression by A,(i, j) when

i i+1 j j+1
o b=t a=L b=
o 1 on a; on’ on

a, =
Then we define

=] 22n
Eg(x)= f g(x)dF(x) = lim y Zzz gxiAs i),
-0 n-o{j=—~ n
where xJ; is some point at which the function g attains its minimum in
the rectangle {(x,,X2): @, S x, <by, a,<x;<b,}. As before, we
require (1.1.7) to hold. It follows directly from the definition thatif X',
and X, are independent and g(x) = g,(x,)g,(x,) then

0

91061) dF (1) f " a0k dF(x)

-~

Eg\(X)g2(X ) = j

= E91(X1)E92(X2)

as long as all these expectatlons are well- deﬁned

Now let X,, X, be any pair of finite variance random variables.
Taking g,(x) = x;, — EX;, i = 1,2 we obtain the covariance of X, and
X,: '

-

cov(X,, X,):= E[(X, — EX,)(X, — EX;)].

X, and X, are said to be uncorrelated if cov(X,,X,)=0. The
properties of the covariance and some related results are summarized
below. : ‘

Proposition 1.1.2

Let X', X, be finite- variance random variables, i.e. EX? < 00, i = 1 2.
Then:

(@) cov(X,,X,)is well defined.
(b) If X,,X, are independent then they are uncorrelated, but the-
converse is not generally true.
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(c) (Schwarz inequality) |cov(X,,X,)| < (/[var(X)var(X,)].
(d) E[(X,— X,)*]=0ifand only if P[X, = X,] = 1. In this case we
say that X, = X, almost surely (a.s.). '
(¢) Define the correlation coefficient p as follows:

. cov(X;, X5)
o 0102

where o; = \/(var(X})), i = 1,2 (assumed non-zero). Then |p] <1,
and |p| =1 if and only if there are constants ¢,,¢, such that

‘Xl =_01X2+(:2 a.s.

PROOF It is no loss of generality to suppose that EX; = EX, =0
(otherwise, replace X; by X; — EX; throughout). Then cov(X,X,) =
EX,X,. For any numbers x, y,

Ixy| < x2 + y2.
It follows that
E|X X! SEIX§+EX§< 0

and hence that cov(X ;, X ;) is well-defined. If X, , X, are independent
then EX,X,=EX,EX,=0,s0 that X,, X, are uncorrelated. To see
that uncorrelated random variables are not necessarily independent,

consider a random variable X such that EX =0 and EX?=0 (for

example, X ~ N(0, 1); see below) and define X | = X, X, =X 2 __EX2
Then cov(X,, X,) = E[X(X? — EX*)]=EX* — EXEX?=0, so that
X, X, are uncorrelated; but they are generally not independent. To
et the Schwarz inequality, take any number a and calculate

E[X, + aX,]* = EX} + 2aEX X, + a’EX3. (1.1.9)

This expression takes its minimum value EX{ —(EX, X ,)*/EX3 at -

= _ EX,X,/EXZ. But this minimum value must be non-negative
since E[X, +aX,]* =0 for any a. This gives (c). For part (d), note
that (a) implies E(X, — X,)? < o0, i.e. (X; — X,) is a finite variance
random variable. Applying Proposition 1.1.1(d) with X=X, - X,
gives the result. Finally, turning to part (¢), the fact that [p| < lisjusta
restatement of the Schwarz inequality. Rewrite (1.1.9) as

E[X, + aX,]* = 0% + 2apa,a, + a*d3.

If p = + 1 then the right hand side is (¢, ao,)* and thus choosing
a=TF ¢,/0, gives E[X, +aX;]*=0.In view of (d), this implies that

1.1 PROBABILITY AND RANDOM PROCESSES 9

X, = —aX,as. Thusc, = + g,/0,. The constant c; iszeroif EX, =

EX,=0; in general it takes the value EX, F (0,/0,)EX ,. Conver- .

sely, it is easy to check that |p| =1 if X, = ¢, X5 +cyas. O
For a random n-vector X =(X,,...,X,)T the mean EX is the n-

vector with ith element EX ;. The covariance matrix cov(X)isthen x n :
" matrix with i, jth entry cov(X;, X ;). One can check that

cov(X) = EXXT — (EX)(EX)". (1.1.10)

Any covariance matrix is symmetric and non-negative definite, the
latter property following from the fact that for any aeR",

0 < E[a"(X — EX)]* =}, ,a;E[X, — EX)(X;— EX))

An alternative way of specifying the distribution of a random
vector (or random variable) is through its characteristic function

_defined for ueR" by

© fo
Gxu) = Ee™" X = j j e""* dF(x).

cw —w
This is always well-defined since €™ = cosu’x + isin u"x and the
trigonometric functions are bounded. There is a one-to-one corre-
spondence between F and ¢y: if F hasa density function f then ¢y is
just the Fourier transform of f, and f can be recovered by the Fourier
inversion formula (1.1.12) below. If F does not have a density then F
can still be recovered uniquely from ¢ by a generalized inversion
formula which it is not necessary to give here.

We shall have many occasions to consider linear transformations

of a random vector X, i.e. random p-vectors of the form

Y=GX+b (1.1.11)

where Gisa p x nmatrix and b a p-vector. The information we need is

as follows.

Proposition 1.1.3

(a) If (1.1.11) holds and X is a finite-variance random vector then
EY = GEX + b, cov(Y) = Geov(X)G™.

(b) If G is an n x n matrix then

E[XTGX] = (EX)'GEX + tr[G cov(X)].

© If Y is any finite variance random p-vector then there is a random
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n-vector X for some n < p and a vector b such that cov(X) =1,
(the n x n identity matrix) and (1.1.11) holds.

(d) If ¢y, ¢y are the characteristic functions of X and Y respectively,
then

dy() = ™ (GTu).

(¢) Suppose thatn = p, that G is non-singular and that X has density
function fy. Then Y has density function fy, where

1 -
: 'fy(y)=mfx(0 l(y~-‘b)).

PROOF Part (a) is immediate from (1.1.10). For (b), suppose first
that EX =0. Then

E[X"GX]=E ilc,.jx,.x,:_i G;j(cov(X))y

i,j= iJj=1
=tr[Gcov(X)]. ‘
If EX = M #0 then writing X = X — M we have EX =0 and hence
E[XTGX]= E[(X + M)TG(X + M)] |
=E[X"GX]+EX"GM + EM"GX + M"GM
=tr[Gcov(X)] + MTGM.
For (c), let Q =cov(Y). It is shown in Appendix C that Q can be

factored in the form Q = UAUT where U is orthogonal and A is
diagonal with entries 4,,...,4,, the eigenvalues of a. Define

NZ @
A2 = ’
o Vi
and
G =UA'",

Suppose for a moment that A; > 0 for all §; then G is non-singular. If we
define X = G™}(Y — EY) then, by part (a), EX =0 and cov(X) =1,
and Y=GX + EY. If only p— n eigenvalues are non-zero then a

1.1 PROBABILITY AND RANDOM PROCESSES 11

similar construction applies but X has dimension n and is not
determined as a unique linear combination of the Y.
Part (d) is immediate from the defintion, since

dy(u) = Ee*™Y
= EeiuT(GX-i-b)

— eiuTbEei(GTu)TX
=e""¢ (G u).

For (e) we use the Fourier inversion formula

1 (® fo
fy(y)=ﬂf | e ™y du, . du, (1.1.12)
! eV (GTu)du, ... du,

2n - J —»

1 * o @ o
=m ~ ...J\ e~ G (v b)¢x(U)dUI...dUP

. 1 1

A ) .o
Notice that in Proposition 1.1.3, part (d) is true with no restrictions
on the distribution of X or on the dimensions n, p, whereas (e) holds
only under special conditions, without which Y may not have a
density at all. This is why the characteristic function is such a useful
construction in dealing with linear combinations of random variables.
We now introduce the idea of the conditional distribution of a
random variable X given another random variable Y. (In the
following discussion X and Y are, for notational simplicity, taken as
scalar but analogous results apply to the vector case.) Recall that for

events A, B, the conditional probability of 4 given B is

P(A and B)

P(A|B) = B

~if P(B)>0, with arbitrary assignment if P(B)=0. The obvious

definition for the conditional distribution Fy,(a;b) of X given Y
would be

Fyylasb) = PLX < a]Y = b].

This is correct if Y is a discrete random variable taking values b,,b,...
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with positive probability, but not if Y is a continuous random
variable since then the event Y = b has probability O for all b. To
circumvent this difficulty we adopt the following approach. Let F(a, b)
be the joint distribution function of X and Y, so that the marginal
- distribution of Y is Fy(b)= F(o0,b). If Fy(b+ )— Fy(b) >0 for all
6> 0 then IR ,

P[X <aand b<Y <b+§]
P[b<Y<b+4]

‘_F(a’b-i‘é)_F(aab)
© Fyb+8)—Fyb)

P[X<ab<Y<b+d]=

We now define

F(a,b+ 6)— F(a,b) (1.1.13)
Fy(b+8) — Fy(b)

when this limit exists. If Fy(b + ) — Fy(b)=0 for some 6 >0 then
F yy(a; b) is defined arbitrarily as F x(a). For each fixed b, Fyy(a; b) is a
distribution function in a. '

This definition is still not completely general, but it does cover both
discrete and continuous random variables. Indeed, it is easy to see
that if X, Y have a continuous joint density function f then

Fypla;b) = lim

r f(x,b)ydx

— 00
=]

Fyyla;b)=
J flx,b)dx
if the denominator is posifive, so that X has_a conditional density
function '
' f(x,b)
f4(b) fb)y>0

SaSD= rg b =0

where fy, fy are the marginal densities.
The conditional expectation of some function g(X, Y) given Y is just
the integral with respect to the conditional distribution, ie.

E[g(X,Y)|Y]= j‘i g(x, Y)dF g y(x; Y). -, (1.1.14)

1.1 PROBABILITY AND RANDOM PROCESSES 13

It is-a function of the random variable Y. Cohditional c_xpeétations
have the following important properties. We state them for the vector

case.

Proposition 1.1.4

Let X, Y be jointly distributed random vectors and g be a real-valued
function such that g(X) is integrable. Then '

(a) If X and Y are independent then E[g(X)|Y] = E[g(X)].

(b) If X is a function of Y, say X =HK(Y), then E[g(X)|Y]=
9(X) - (= g(h(Y))).

(c) E[g(X)]=E[E[g(X)|Y]].

(d) E[gX)H(Y)Y] = E[¢(X)|Y]n(Y)
for any function h such that g(X)h(Y) is integrable.

REMARK The conditional distribution Fy,, exists for any random
vectors X, Y and the above propositions hold. In fact, they hold even
if Y has an infinite number of components. We give a partial proof
here for the scalar case when the conditional distribution is defined by
(1.1.13).

pROOF Part (a) follows from the fact that if X and Y are in-
dependent then the ratio in (1.1.13) is equal ot F(a) for any d. Thus
the conditional distribution of X given Y is the same as the
(unconditional) distribution of X. For (b), take first a < h(b). Then
P[X <aandb< Y <b+5]=P[hY)<aandb<Y<b+J]=0for
sufficiently small & (as long as h is continuous). Thus Fy,,(a;b) =0
if a = h(b) and similarly Fy,,(a; b) =1 if a = h(b). Thus Fy,(a; b) is the
distribution that puts probability 1 on the point h(b) and hence
E[g(X)|Y = b] = g(h(b)) = g(X). Properties (c) and (d) follow immedi-
ately from the definitions (1.1.13) and (1.1.14) when the conditional
density fy,y exists. They also hold without this restriction but we do
not give a proof here. - O

Two further properties of conditional expectation will be required.

“The first of these relates to ‘least-squares’ estimation. Recall from

Proposition 1.1.1 that the choice a = E[g(X)] minimizes E [g(X) — a)?
over constants a. One can regard E[g(X)] as the ‘best estimate’ of g(X)
when no information about X (other than its distribution) is supplied.
Now suppose we observe the random vector Y and base our estimate

—

~ N NN

~ o~



SN—’

R

14 PROBABILITY AND LINEAR .S‘YSTEM THEORY

on the value of ¥, that is we wish to choose a function e(Y) so as to
minimize E[g(X)—e(Y)]% This is the so-called non-linear least-
squares problem.

Proposition 1.1.5

Let X, Y, g be as in Proposition 1.1.4. Then.E[g(X)— e(Y)]? is.
minimized over functions e by the function e(Y) = E[g(X)|Y].
PrROOF Using Proposition 1.1.4(c) we can write

E[g(X)—e(Y)]? = f f [g(x) — e(1)T2dF . (x; y)dFy (y).

The double integral is certainly minimized if the inner integral is
minimized pointwise for each y. But the inner integral is equal to

- E[g(X) —e(y)]* where X is a random vector: with distribution

Fyy(x; y). It follows from Proposition 1.1.1 that the minimizing value

of e(y) is E[g(X)] = E[g(X)|Y = y1. o

The final result states the rather natural property that if two
random vectors Y and Y are in one-to-one correspondence with each
other then conditioning on Y is equivalent to conditioning on ¥.

Proposition 1.1.6
Let X, Y, g be asin Proposition 1.1.4 and suppose ¥ = ¢(Y) where ¢ is
a one-to-one function. Then E[¢(X)|Y] = E[¢(X)|Y] a.s.

PrOOF Denote ¢(Y) = E[g(X)|Y] and &¥) = Etg(X)I'Y]. It is not
hard to see, from Proposition 1.1.4(d), that e(*) is the unique function
such that

E[H(Y)e(Y)]=E[W(Y)g(X)] (1119

for all bounded functions h(-).' Similarly, & is characterized by the
property that

E[nY)eY)] = E[h( Y)g(X)] forallh
whlch we can write

E[he¢(Y)eo¢(Y)] = E[h° ¢(Y)9(X)] (1.1.16)

it is unique up to equivalence, i.e. il é is'a function such that Plé(Y)=e(Y)] =1 then
E[g(X)|Y] can also be taken as &Y).

11 PROBABILITY AND RANDOM PROCESSES 15

where hog(Y) = h(¢(Y)), etc. But if j is any bounded function then
j=ho¢ where h =j°¢ 1, Thus (1.1.16) is equivalent to

E[j(Y)éep(Y)] = E[j(Y)g(X)] for all bounded j(*).
Comparing with (1.1.15) we see that o

e=¢@o¢
and hence that

E[g(X)1Y] =e(Y)=5°¢>(Y)=E(T’)=E[9(X)‘|Y]- O

The normal distribution

This is probably the most important distribution in statistics and has
many special properties. A random n-vector X has the normal or
gaussian distribution if its characteristic function takes the form

¢px(u) = exp(im™u — $u"Qu)

for some n-vector m and non-negative definite matrix)Q. Then
m= Ex and Q = cov(X). We write X ~ N(m,Q). In the special case
m=0, Q=1I, X is said to be standard normal; it follows from
Proposition 1 1.5 below that the components X; are independent
N(0, 1) random variables (i.e. each component is normally distributed
with zero mean and unit variance).

Any collection of r.v.s is said to be jointly normal if the vector r.v.
containing those r.v.s as components has normal distribution.

Proposition 1.1.7

(a) Linear combinations of normal r.v.s are normal.

(b) If two jointly normal r.v.s are uncorrelated they are independent.

(c) Any normal vector can be expressed as a linear transformation of
a standard normal random vector.

(d) If Y ~ N(m, Q) and Q is non-singular then Y has density function

1 _
fyx)= WCXP(—‘ Fx—m)TQ ™ x— m)).

" (e) If X is a normal n-vector then'the condltlonal dxstrlbutlon of

(Xy,..., X, given (X4 1,. .-, X,) is normal. Its mean is an affine’
function of (Xy415---5Xn) and its covariance is constant {(does not

“depend on (X4 15.+-> X))



16 PROBABILITY.AND LINEAR SYSTEM THEORY

prOOF (a) If 'X~N(m, )] and Y is given by (1.1.11) then, by
Proposition 1.1.3(d), v
$y(u) = *"dx(G™w)
' = exp(iu"b + im"G™u — $uTGQGu).
This shows that Y ~ N(Gm + b, GQG").
(b) If X,, X, are uncorrelated and @ = cov(X) then

v O
Q—[O 02]

- px(u) = exp(imu — 3v,u} — 0,u3)
='¢x,(“;)¢x2(“2)-
This implies that X,, X, are independent.
(c) This is immediate from part (b) of Proposition 1.1.3 together

with (a) above. ,
(d) From part (c) we can write

Y=GX+m

where v; = var(X;). Thus

where X is standard normal and G is non-singular. Now if Z ~ N 0,1)

(scalar standard normal) then
¢ u)=e" w2,

and it follows from the Fourier inversion formula that the density is

f2)= _L_e—zZ/z.

J(@n)

Therefore the density function for X is

1 2
fx(x) = (27:)”/2 e~ /2.
Applying part (¢) of Proposition 1.1.3 we obtain the stated density
function for Y. :

(€) A full proof of this fact, and general expressions for the
conditional mean and covariance, are contained in the section on
linear estimation theory, Section 3.1. However, let us demonstrate it
for the case n = 2, supposing that the covariance matrix g = cov (X)is

non-singular. Then X =(X,X,) has density function fx(x) as in.

1.1 PROBABIL‘ITY AND RANDOM PROCESSES 17
Part (d) and the conditional density of X '1 given X, is
exp(—3(x —m)'Q ™ *(x —m))

exp(— 40— mTQ~1(x —m)) dx;

fquz(xﬁxiz) = J~°°

This is a one-dimensional density function in x, for each fixed value of
x,. Note that the denominator does not depend on x; and is just an
x,-dependent ‘normalizing constant’; denote it by K *(x,). Then if
we denote Q™! =R =[r;],
J?x,|x‘2(x1 5%5) = K (%) exp(—(x —m)TR(x —m))
= K, (x;)exp(—3{(xi — my)’ry
+ 2(x; — my) (X — mrys + (X2 — Mp)’r25})

. 2
= Kl(xz)ex;)< —1r, {xl-— (ml‘— (x;— mz)'fﬁ)}
‘ 11

+ Kz("z))

where K,(x,) is a term not depending on x,. We can write the last
cxpression as

1
K;(x,)exp < - ’2?(3‘1 - ”711)2)

where
. iz
m; =my ——=(x, —my)
i1 .

6' 2 = 1/ r1 1
and
K(x;) = K (x3) exp(K,(X))-
We know that this is a density function in x,; it is clearly the density
function N(#,,62) and the normalizing constant K3(x,) is therefore
1/6,/(2m) (it actually does not depend on x,). Thus, as claimed, the

conditional variance 2 does not depend on x, and the conditional
mean i, is affine in x,. To get the coefficients explicitly, note that

R=Q"1=—-—-1——'—2—|i 922 —421]
A 411922 — 912 | — 921 911

—~ N N AN~
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where Q =[g;;]. Using the fact that Q = cov(X ): we see that
my=m; + ————co“l/g((;(’:)(:!)
51 =(1—p?var(X,)

where p is the correlation coefficient. These agree with the general

expressions given in Section 3.1. One notes in particular that &, = 0 if
lpl = 1 which is correct because then X, = + X, with probability 1.

(X2 —m,)

1.1.2 Stochastic processes

A stochastic process is just a collection {X,,te T} of random variables

indexed by a set T. Generally T has the connotation of time: if it is an’

interval, say [, b], then { X} is a continuous-time process, whereas if T
contains only integer values then {X,} is a discrete-time process. The
most commonly encountered time sets T for discrete-time processes
are the integersZ={...—1,0,1,...} and the non-negative integers
Z* ={0,1,...}. In this book we consider only discrete-time processes:
they are mathematically simpler, and from the point of view of

applications we must in any case discretize at some stage for digital

computer implementation. The reader can consult Davis (1977) for an
introduction to stochastic system theory in continuous time.

Time series which might be modelled by discrete-time processes
arise in two ways:

(a) Series which are only available in discrete form, such as economic
data.
(b) Series which are produced by samphng continuous data.

" In the latter case, in addition to studying the time series itself, the

relation between the series and the underlying continuous data needs
to be considered: for example, one can ask what constitutes an
appropriate sampling rate. Such questions are however beyond the
scope of this book in that they cannot meaningfully be posed without
bringing in the theory of continuous-time processes. :
If T={1,2,...,N} then the process {X,}={X,X5,..., Xy} is

- equivalent to a random vector and its probabilistic behaviour is

specified by giving the joint distribution of the N random variables

_ involved. In principle this covers all practical cases in that any data

1.1 PROBABILITY AND RANDOM PROCESSES 19

record is necessarily finite, but conceptually it s often useful to think of
a process either as having started at some time in the distant past, or
as continuing indefinitely into the future, or both, in which case T will
be infinite. The probabilistic behaviour is then in principle spemﬁed
by the family of finite-dimensional dzstrzbuttons of the process, i.e. by
giving the Jomt distribution of (X,,,...,X,,) for any arbitrary times
tists,...,t,. We say ‘in principle’ because giving an infinite set of
dlstrlbutlons is a rather unwieldy way of specifying a process; usually
it will be constructed in some well-defined way from some very simple
process, and then the Jomt distributions can be calculated, if required.
However, for the theory given in this book the complete distributions
will rarely be required, ana1y51s being generally carried out only in
terms of means and covariances.
In this book we shall often consider vector processes {X ,,,ke T},

where each X, is a random d-vector. The mean of such a process is the
sequence of vectors {m(k), keT} where

m(k).= EX,.

The covariance function is the d x d matrix-valued function

R(k, ) = cov(X,, X)) = E(X,, — m()) (X, —m())T  k,IeT.

In the scalar case d =1 we usually denote the (scalar-valued)
covariance function by r(k, I). Note that these functions are defined in
terms of the two-dimensional distributions, i.e. they can be calculated
if one knows the distributions of all pairs of random vectors X, X,.
From the Schwarz inequality, Proposition 1.1.2(c), the mean and
covariance functions are well-defined as long as the process has finite
variance, i.e.

E|lX, |2 < o0 for all k.

Since the mean is just a deterministic function, it is often convenient to
assume that the process has mean zero, or equivalently to consider the
centred process

Xi= Xy —m(k)

which has zero mean and the same covariance function as X,.

While there are no restrictions on the form of the mean m(k) this is -
not true of the covariance function R(k, ). Indeed, pick n time 1nstants

ky, ky,..., k, and d-vectors ay,...,a; and calculate
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ar 2 .
E<Z a;'er‘> =ZEaTinXIjaj
i . ij
=Y a] Rk;, kj)a;.
[N}

Since the left-hand side is non-negative, it follows that ‘
> af R(k;, kja; =0 (1.1.17)
iJ

for all possible choices of n, ki,...,k, and a,,...,a, A function with
this property is said to be non-negative definite. R is also symmetric in
that ‘

R(k,l)= R™(, k).

- The process X, is normal if all its finite-dimensional distributions
are normal. In this case the finite-dimensional distributions are
completely specified by the mean and covariance function. For the
covariance matrix Q of the nd-vector random variable

— 1 d 1 d
;n-"(X”,...,X“,X,z,---,X,n)

Rty ty) R(ty,ta).-- R(ty,t,)
Q= R(tZ,tl) R(tz,tz)...
. : R(tyt,)

which is a bona fide covariance matrix in view of condition (1.1.17).
The mean is:

m(t,)
m= L

mit,,)

Thus the distribution of (X, ..., X,,) is specified by the characteristic
function
By () = EXP(imTu — 3u” Qu).

This shows, among other things, that to every second-order process
there corresponds a normal process having the same mean and
covariance function. For if X, is an arbitrary (not necessarily normal)
second-order process with mean m(k) and covariance R(k,]) then the
above construction gives 'a normal process X, whose mean and
covariance coincide with those of X,. '
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Stationary processes

A process { X, ke T} is said to be stationary (or strict-sense stationary)

ifits distributions do not vary with time, i.e. if for any kg, k4, ..., k, the

distribution of the n-vector random variable (X, ..., Xy,) is the same .

as that of (Xy, 4 -+» Xkn+o)- This means that the origin of time is
irrelevant and the joint distributions of the random variables only
depend on the time intervals separating them. Taking n =1 we see in
particular that all X, have the same distribution — the distribution of,
say, X,. Thusif EX? < oo then EX} < oo for all k and the process has
a well-defined mean m(k) and covariance function R(k, /). Since all X,
have the same distribution, m(k) = m(0) for all k, i.e. the mean of a
stationary process is a constant. Similarly, for any ko, k, I, the joint
distribution of (X, X)) is the same as that of (X 4, X1+k) SO that

, Rk, = R(k + ko, ! + ko).
Take ky= —1; then
R(k,ly = R(k —1,0).
Now define ‘
R(m) = E[X, X} _,.] = R(m,0).
Then we see that
R(—m)=R"(m)

‘and that .
R(k,)) = R(k — ). (1.1.18)

For a stationary process the term ‘covariance function’ usually refers
to the one-parameter function R defined as above. In the scalar case,

where the (two-parameter) covariance function is denoted r(k, ), we -

define #(m) = r(m,0); then #(m)=#(—m) and
E[X X /] =#(k —1I).

Thus the covariance between X, and X, depends only on their
distance apart in time. ‘ ‘
The simplest form of stationary process is a sequence (X1, X3,...}
of independent identically distributed random variables. If F denotes
their common distribution function then thé distribution function of

the random vector (X,,,..., X, ) is given by

/\/\"\/\/\r-\
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2 PROBABILITY AND LINEAR SYSTEM THEORY
Foa@s..ra)=PIX}, <al,....X],<dl,j=12,....d]

=HP[X{,<a{,j=1,...,d]

= 131 F(a).

Thus the finite-dimensional distributions are completely determined
by F. The mean and covariance are given by

ml) = EX, |
R, ) = {(V)ar(x‘) i : 5 |

This process is, for reasons discussed below, sometimes known as a
white-noise sequence. It plays a central role in the theory.

A finite-variance process X, with constant mean and whose co-
variance function satisfies (1.1.18) for some function R is said to be
weakly or wide-sense stationary. As above, the one-parameter func-

" tion R(k) is known as the covariance function of the process. Not every

wide-sense stationary process is strict-sense stationary: for example,
let f,, f, be two different density functions satisfying

Jw xfi{x)dx=0, Jw x2fi(x)dx =1 i;-1,2

-0 —

and suppose X, X,,... are independent random variables such that
the density function of X, is f, if i is odd and f; if i is even. Then
EX,;=m(i)=0 for all i and the covariance function is

rk, )= EX, X -6([k—li)

8() = { 1%0

Thus X, is wide-sense statlonary, but it is not strict-sense stationary
since X, and X, ., do not have the same distribution, for any k.

where

A wide-sense white-noise sequence X,,X,,..: is a wide-sense.
. stationary process with zero mean and a covariance function of the

form

R(k) = Qd(k)
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for some non-negative definite matrix Q. This merely stipulates that
the random vectors X; have the same mean and covariance and that
X* and X} be uncorrelated for all k,! and i#j. Q can always be
factored in the form Q = AAT where A is a d x m matrix for some
m<d. If (Y,) is an m-vector weak-sense white-noise process with
covariance I,,6(k) (I, is the m x midentity matrix) then X,:= AY, has
covariance Qd(k) so there is no real loss of generality in taking Q to be
the identity matrix, in which case the components X¥ and X !are
uncorrelated at the same time i for k+ 1.

In the analysis of wide-sense stationary processes a large réle is
played by Fourier series techniques, giving rise to the so-called
spectral theory of stationary processes. We shall make occasional but
not extensive use of spectral methods in this book. To introduce the
ideas let us consider first a scalar zero-mean wide sense stationary
process X, with covariance function r(k). Suppose that

o0

Y. Ir(k)] < 0. (1.1.19)

k=—o
Then we define the spectral density function ®(w) for —n < w <z by
O(w) = f r(k)e™ %, (1.1.20)

Since |e ¥ = 1, condition (1.1.19) ensures that the sum converges for
any o and it is easily seen that ®(w) is a continuous function of w. It is
also real and non-negative, due respectively to the symmetry and non-
negative definiteness (1.1.17) of r(k). Evidently, from the definition
(1.1.20), r(k) is the kth coefficient in the Fourier series expansion of
®(w); it can therefore be recovered from ® by the standard formula for
calculating Fourier coefficients, namely

r(k) = 21_7z J " D(w)e* dw

(the integral is certainly well-defined since ® is bounded). In
particular, the variance of the process is given by

-n

var(X,) = r(0) = % f " d(w)do.

Note thata, scalar white-noise process with variance o2 has spectral

- density ®(w) = o2, i.e. a constant for all w. This is the reason for the
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name ‘white noise’, by analogy with white light which has an
approximately flat frequency spectrum.

Not every wide-sense stationary process has a spectral density
function but each one has a spectral distribution function. A general

" result known as Bochner’s theorem asserts that if (k) is the covariance
function of some wide-sense stationary process with variance r(0) = -

o then r(k) can always be represented in the form
(k) 2 ¢ d F(w)
T2n ), .

where F is a distribution function on (—=,m), ie. a monotone
increasing function with F(—m)=0, F(n)=1. The integral is a
Stieltjes integral as described earlier. The process has a spectral
density @ precisely when the spectral distribution F is absolutely
continuous, and then

w
F(w)=f O(w)dw'.

Thus (1.1.19) is a sufficient condition for F to be absolutely
continuous. Note that, since F is non-negative and monotone,
O(w) 20 on (— =, + 7).

Analogous results hold for vector processes. The spectral density
function now takes values matrices over the complex field. We
summarize the results in the following proposition.

Proposition 1.1.18

Let {X,,keZ} be a wide-sense stationa.ry d-vector-process with co-
variance R(k) and suppose that

+
2 IRK)| <
k=—o
(the matrix norm || || here is, say, the spectral norm; see Appendix

D.2). Then {X,} has a spectral density function ®(w) given by

D)= Y. Rke
k=—o
@ has the folloWihg properties: ®(— w) = (), O(— @) + P(w) is re'c}l
and ®(— ) + ®(w) >0 for we(—m, + 7). The covariance function is

e e et s, < 4
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given in terms of the spectral density by the inversion formula

n

R(k)= 2_17:_ j i O(w)e“*dw.

1.1.3 Convergence of stochastic sequences

On many occasions in this book we shall wish to investigate questions
such as whether a given process is asymptotically stationary, whether
parameter estimates converge to their true values as the length of a
data record increases, and so on. We need to know something about
convergence of sequences of random variables in order to formulate
such questions precisely.

First let us consider a non-random sequence {X,} = X, X,,... of
real numbers. We say that {X,} converges to X, which we denote

X, —»X as k-

or

lim X, =X

k— o0
if for any & > 0 there is an integer k(¢) such that | X, — X| <¢ for all
k > k(e), i.e. if the distance between X, and X is eventually arbitrarily
small. {X,} is bounded above (resp. below) if there exists a number K
such that X, < K (resp. X, = K) for all k; it is.bounded if it is bounded
above and below. Any sequence bounded above has a least upper

_bound, denoted sup, X, while any sequence bounded below has a

greatest lower bound denoted inf, X,. If {X,} is not bounded above
(resp. below) we define sup, X, = + co (resp. inf X, = — c0). Then

- sup, X, andinf, X, are well defined for any sequence { X, }. Itisclear that

sup, X, > inf, X, and that X, is bounded if and only if —o0 <
infX, <sup X, < +co0. {X,} is monotone increasing (resp. de-
creasing) if Xp., =X, (resp. X,y < X,) for all k. A monotone
increasing sequence always has a limit, namely sup, X, if we agree

that ‘X, — + o’ means that for any number M there is a number.

k(M) such that X, > M for all n=k(M). A monotone decreasing
sequence has a limit also (the limit may possibly be — c0).
For an arbitrary sequence {X,}, define

Yn = SUp Xk
kzn
kzn

~ o~
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Then y, is monotone decreasing and z, is monotone increasing, since
the sup and inf are being taken over progressively fewer and fewer
terms. We define :
limsup X, = lim y,
k-0

n— o

liminf X, = lim z,

k- n—ow

Thus lim sup X, and lim inf X, are well-defined for any sequence
{X.}; it is always the case that lim sup X, > lim inf X,.

The lim sup operation describes the behaviour of ‘large’ values of
the sequence in the following way.

Proposition 1.1.9

Let {X,} be any sequence such that x*:=lim sup X, < + co. Then

‘foranye > Othestatement X, > x* + ¢is truefor only afinitenumber of

indices k whereas thestatement X, > x* — gis trueforinfinitelymany k.

There is an analogous characterization of lim inf X,.

Finally, a sequence {X,} is a Cauchy sequence if | X, — X,|—0
as n,m— o0, i.e. iffor any ¢ > 0 there exists n(g) such that | X, — Xl <&
for all n, m = n(e). Note that the definition of a Cauchy sequence refers
only to the elements of the sequence themselves and does not involve
any possible limit points.

We can formulate the idea of convergence in two alternative but
equivalent ways using the above definitions.

Proposition 1.1.10

Let {X,} be any sequence of real numbers. Then the following
statements are equivalent:

(a) X,— X for some finite real number X.

(b) {X,} is a Cauchy sequence.

() —o0 <'H,fnian"= limsup X, < + oo.
-0 k=

If any of these holds then

-~ lim Xk—llmsupXk— hmmek

k—'oo

Let us now turn to convergence of sequences of random variables
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or, equivalently, of stochastic processes {X,,keZ™*}. Then we have a
different sequence of real numbers for every realization of the process.
The most obvious way to define convergence would be to say that
X,— X ask— o foreveryrealization of { X, X },in the sense described
above. Note that the limit X is in general a random variable, i.e.
depends on the realization of { X, }. This is known as sure convergence,
but is not actually a very useful concept because it can be destroyed by
trivial modifications of the process. Indeed, suppose {X;} is another
process such that P[X, = X;] =1 for all n; {X,} and {X,} are then
said to be equivalent. {X,} and {X}} have exactly the same joint
distributions and it is unreasonable to attempt to distinguish between
them, yet it is quite possible that {X}} converges surely and { X} does
not. We therefore_make the following definition: {X,} converges
almost surely (a.s.) to X if there exists an equivalent process {X;} and a
random variable X’ such that P[X = X']=1 and {X}} converges
surely to X'. Similarly, we say that {X,} is a Cauchy sequence a.s. if
every realization of some equivalent process {X;} is a Cauchy
sequence. We then have the following result.

Proposition 1.1.11

A process {X,} converges a.s. to some random variable X if and only
if {X,} is a Cauchy sequence a.s. :

Another approach to ¢onvergence of random variables is based on
the following idea. In the case of sequences { X, } we know that X, —» X
if and only if d(X,, X)— 0 where d(X,, X) =|X, — X| is the distance
between X, and X. To apply this in the stochastic case we need some
scalar measure of the ‘distance’ between two random variables. The
most common such measure, used in most chapters of this book, is the
mean square deviation dy(X,,X)=E(X,— X)?. Occasionally it is
useful to replace the exponent 2 by some other number p =1 giving
the pth mean deviation d,(X,, X) = E|X, — X|”. In general we say
that X,—X in pth mean as k— o if E|X,|? <o for all p and
E|X,— X|P—0 as n—oo (this will imply that E|X|? < c0). When

'p =2 this is usually known as quadratic mean convergence.

These various modes of convergence are not equivalent. The

standard example to demonstrate thisis as follows:let U be arandom

variable uniformly distributed on [0,1] (i.e. with density function
Sfu¥) =1,0<x < 1, fy(x) =0 elsewhere). Define
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1

k 0<x<;
gm={
* 0 elsewhere

- and
Xk.= gi(U).

Clearly X,—0 as. since g, (U)=0 for all k>1/U but EXi=
E(X, —0)? = 1s0 X, doesnotconvergeto zeroinquadraticmean, Now
define for m=1,2,...and n=0,1,...,2" =1,

n+1
2m

1 Zs<xs<
hm.,,(x)={ 2

0 elsewhere

~and arrange these functions in a single sequence
{hy.0sh1,1h2,05- -5 B2,3, 83,05 -}. Let by denote the kth element of this
sequence and define

Y= h(U).

Since E[h,(U)]>=2"" it is clear that EY,/—0 so that ¥,—0 in
quadratic mean; but almost sure convergence does not take place
since for any Ug(0, 1), limsup Y, = 1,liminf ¥, = 0.

The following proposition summarizes the relationship- between
the various convergence concepts.

Proposition 1.1.12
Let {X,,keZ*} be a stochastic process. Then

(a) X,— X in pth mean (p = 1) for some r.v. X such that E|X|? < co
if and only if X, is a Cauchy sequence in pth mean, ie.
E|X,— X,/F—0 as n,m—oco.

(b) X,— X in pth mean implies that X, —» X in rth mean for any r,
1<r<p. '

(c) If X, — X in pth mean, p 2 1, then there exists a subsequence X
such that X, — X as. as m— 0.

As the name implies, a subsequence is a sequence {X,,meZ"}
where X,,= X, for some increasing sequence of indices k; < k,<
ky<-:+ . In the above example, for instance, it is clear that
By o(U)—0 a.s. as m— oo and this is a subsequence of (Y).
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All of the above discussion extends immédiately to d-vector-valued

processes. In this case X, — X a.s. if and only if X} — X" as. for each

i=1,2,...,d. The definition of pth mean convergence requires no
change and all propositions are valid as stated.

Finally, we shall need the following ergodic theorem. It was stated :

earlier that EX is the ‘average value of X in a long sequence of trials’.
This is obviously what it ought to be but such properties are results of
the theory rather than being built into the definitions. Ergodic
theorems are the results which establish just such connections

. between sample averages and expected values. The one we are going

to give depends on the so-called Borel-Cantelli lemma. We donot give

a proof-of this here.

Lemma 1.1.13 (Borel-Cantelli).

Suppose {4,} is a sequence of events, event A, having probability
PA,. If

iPA,‘<oo
k=1

then P[4, occurs for infinitely many k] = 0.

Alternatively, one can say that if ) PA, < co then with probability
one there is some integer ko such that 4, does not occur for any k
beyond k. This is very useful in proving almost sure convergence,

as the next lemma illustrates.

Lemma 1.1.14

Let {X;,keZ*} be a vector process such that
Y. E|X,|* < 0.
k=1

Then X, —0 as.

PrROOF Fix £¢> 0 and define

A =[1X>e].

By the Chebyshev inequality, '

1
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Therefore ) PA, < oo and from our alternative formulation of the
Borel-Cantelli lemma this means that with probability one, |X,|<e
for all k greater than some k. Thus |X,|—0. O

Here now is the main ergodic theorem. Note tﬁat, unlike many of
its ilk, it does not require that the process {X,} be stationary.
Theorem 1.1.15

Let {X,,keZ™"} be a scalar finite-variance process with covariance
function r(t,s). Suppose that there are numbers.c >0, Ae(0,1) such
that- '

Ik, | < e for all k,1>0., (1.1.21)

Then
N .
lim — % (X, —EX,)=0 as.
N— o0 k=1

REMARK Suppose for example that the X, are uncorrelated'

random variables with the same mean y and variance ¢2; then the
condition (1.1.21) is certamly satisfied and the theorem asserts that

lxm — Z X,=up as,

N-no
Le. sample averages converge to the mean value. This confirms our
interpretation of the expectation as the average value 1n a long
sequence of trials.

PROOF The theorem is true as stated if it is true when EX «=0,s0
we shall assume that EX,, = 0 for all k throughout. It is easily shown
that for Ae(0, 1) there exists a number K such that for all N,M,

Z Zl'k "< KM —N|. (1.1.22)
k=Nl= .
Define
_ 1 X
XN_NkZ:IXk
Then
oy 1 &N
EXN=_EZ ZELHXJ
k=11=1 '\
1 X X Kc
= k, < —
NZkZ“:ZIr( l) N
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where we have used condition (1.1.21) together with (1.1.22). Consider
the subsequence Xy where k(N)=N2 Then ZN EXin <
KcY T N™% < oo so'that by Lemma 1.1.14,

Xum—0 as. asN—oo.

To show that the entire sequence X, converges and not Just the
subsequence Xy, it suffices to show that

Y,—»0 as. asn—o0
where
Y= max |X;—X,qu)

k(M) Sj<kint1)

Fix n and denote temporarlly p=k(n)=n?q=kin+ 1) (n+1)2
Then

1

(=) met 3.3
——- + -
ip ,; : Jz=;+1 !

Therefore

o2 2 g a 2
st-z—@%( 3 |le) +—2(, > llx,|)

=1

2 — 2 P 2 q .
L S A el
P l.m,= P°tm=p+
On taking expectations and using (1.1. 21) and (1.1 22) again, we find

that for some constant K,

EYZ<K1

It now follows from Lemma 1.1.14 that Y, 7. =0 a.s. This completes the
proof. _ O

1.2 Linear system theory

System theory concerns the qualitative properties of devices whose
responses depend on inputs applied to them and on the initial values
of certain internal variables. Such devices are called systems. Issues
connected with selection of inputs which give rise to desirable
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responses, extraction of information about the values of internal
variables from the response and equivalent descriptions of the system
equations are of primary interest. We shall look into some of these
issues, laying special emphasis on aspects relevant to the study of
filtering and control problems. As far as the problems studied in this
book are concerned, system theory enters most explicitly when we
come to the steady-state analysis of optimal estimators and con-
trollers. Analysis is possible when certain hypotheses are made which
involve the system-theoretic concepts of controllability, -observa-
bility, stabilizability and detectability. We provide a largely self-
contained, but rapid, coverage of the theory surrounding these
concepts.

The systems we consider are discrete time, linear time-invariant
systems. They are described by the equations

Xy 1 = Ax, + By 1.2.1)
v =Hx, (1.2.2)

in which, 4, Band Haren x n,nXm and r x m matrices respectively.
In these equations the r-vector y is the output of the system,
sampled at time k. (The time scale is assumed normalized so that
sampling occurs at times k=...,—1,0,+1,...). The m-vector u, the
input (or control) at time k, summarizes the control action applied to
the system during the interval of time , k <t < k+ 1. The n-vector x;,
the state at time k, comprises variables which, loosely speaking, sum
up the effect of past inputs and other influences on future outputs.
Equation (1.2.1) is often called the state equation, and (1.2.2) the
observation equation. -
Notice that, given any time j, and given the state x; at time j, x;, and
* the inputs u;, ;. ,...at times j,j+ 1,..., we can solve the system
equations (1.2.1) and (1.2.2) for Xy, Y, k> j, and obtain

k—1
x, = Akix;+ Y A By, (1.2.3)
i=j
. k’_l .
o= HA*ix;+ 3 HA*"'Bu, (1.2.4)
i=j

(in these expressions A raised to the zeroth power is interpreted as the
identity matrix). _ ‘

The state has the following property: knowledge of x;, the state at
time j, in addition to knowledge of present and future inputs, namely

o

12 LINEAR SYSTEM THEORY 33
Uj, Uy 1,..., suffices for calculation of future outputs y; 1, Yj+2se+
This is clear from (1.2.4). It is in this sense that the state contains all
relevant information about the past history of the system for purposes
of determining future outputs. ' .

The discrete time system with description (1.2.1), (1.2.2) is called
‘linear’ because x; and y, depend linearly on xo and ug, ..., %y . It is
called ‘time-invariant’ for the following reason. If we set an initial state
at time 0 and apply an input sequence, then the state and output, x;

and y,, at time k, coincide with the state and output X, ; and j,;at-

some subsequent time k + j, which would result if the same initial
state, previously set at time 0, is now set at time j, and the input
sequence is delayed by the time interval j. These properties are
obvious from the formulae (1.2.3) and (1.2.4). So the response of the
system is invariant under time shifts.

1.2.1 Controllability and observability

Controllability

We first examine conditions under which we can change the state of
the system at will by suitable choice of the input sequence. Systems
having this property are called ‘controllable systems’.

Definition 1.2.1

The system (1.2.1), (1.2.2) is controllable when, given any n-vectors X,
and x,, there exist some non-negative integer j and inputs tg, ..., Uj-1
such that x; generated by the state equation

X1 = AXy + By, k=0,...,j—1
x0=xa

satisfies x; = X,

Notice that the definition of controllability involves only the state
equation which is itself specified by the matrices A and B. For this
reason we often say (4, B) is controllable’ in place of ‘the system
(1.2.1), (1.2.2) is controllabie’. .

We remark that variants of Definition 1.2.1 appear in the literature.
Many authors reserve the terminology ‘controllable’ for systems
which can be driven from an arbitrary initial state to zero, a notion of

N o~ N
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controllability which is strictly weaker than ours. (As an exampie ofa
system (A4, B) which is not controllable in our sense but is controliable

‘to the zero state’ take A such that 4* =0 for some k and B =0). We-

could consider too systems which can be driven from the zero state to
an arbitrary terminal state. Such systems are often called reachable
systems. Actually reachability is equivalent to controllability in the
sense of Definition 1.2.1.

A simple condition expressed directly in terms of the matrices A -

and B of the state equation (1.2.1) is available for testing controlla-

bility. This is Kalman’s rank condition test, descrxbed in'the following

proposition.

Proposition 1.2.2
(4, B) is controllable if and only if

rank[BiAB:...| A" 1B]=n. (1.2.5)

The n x nm matrix [BiAB:...1A"” ! B] is called the controllability
matrix. Since it has n rows the rank condition can be otherwise stated
as: the controllability matrix has range all of R™. If m = 1, that is the
input is scalar valued, then the controllability matrix isasquare matrix
and the rank condition reduces to the requirement that the controlla-
bility matrix be non-singular.

The validity of the rank condition test for controllability hinges on
the Cayley—Hamilton theorem. For the moment we take A to be an

arbitrary n x n matrix with characteristic polynomial g + 0ty +--- +

®,-,5"" 1. The Cayley-Hamilton. theorem tells us that 4 ‘satisfies
its own characteristic equation’, by which is meant

A= g ATV —a A" —a A —ao]  (1.2.6)

(I is the n x n identity matrix). A consequence of this property is that,
given any non-negative integer i, 4’ satisfies

=Bol +BA+ "+ B,—1A""! for some scalai_'rs Bose-sBn-1-
; (1.2.7)

In other words, A’ is some linear combination of the matrices
I,A,...,A""1. The representation (1.2.7) is obviously pos-

Asxb]e when i=0,...,n—1, and also when i =n, from (1.2.6). That it

is possxble for arbltrary i is now proved by induction; suppose that,
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givenarbitraryj > 0,(1.2.7) is true whenever i < j. Under the induction
hypothesis 4/ can be expressed :

Al=Pol + ByA+-++ + Byy A"

for suitable coefficients f,,..., 8, ;. Premultiplying through by 4 we
obtain

A= oA+ By A 4o+ By A" (1.2.8)

But each of the terms on the right-hand side of (1.2.8) is expressible as
a linear combination of I, A4,..., A"~ ! since, as we have remarked,
(1.2.7)is true for i =0, 1,...,n. It follows that 47**, given by (1.2.8) is
also a linear combination of I, A4,....,4" ', This provides the
required representation of 4/*! and the induction is complete.

We are now ready to establish the rank condition test.

PROOF OF PROPOSITION 1.2.2 Let us write W for the controllability
matrix. Suppose first that W has rank n. Let x, and x, be arbitrary n-
vectors. Under the assumption, W has range all of R" and so there
exists an nm-vector & (which we partmon as a collection of m-
VECtors Uy, ..., U, -1, thus &= col {ug,...,u,-}") such that

— A"x, = WE=[BIAB:...;A" 'B]col{t,_,..., o}

This equation can be written in the form
n—1 X
xp=A"x,+ Y, A" 1Buy.
j=o ‘

It is clear from (1.2.3) that the input sequence u, ..., 4, drives the
state x, at time 0 to x, at time n. We have shown that (4, B) is
controllable

Next suppose that W does not have rank n. This means that the
rows of W are not linearly independent and so there exists a non-zero
n-vector rf such that

ET[BIAB:...iA""'B] =0
or, otherwise expressed,
ETB=¢TAB ="+ =¢TA" 1B =0, ‘ (1.2.9)

TGiven an ordered collection of matrices {F},..., F,}, each having the same number of

" columns, then col{Fy,...,F,} denotes [FT.FJi.. FT]T
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It remains to show that (A,B)' is not controllable. Equations (1.2.9)
imply that :

ETAKB=0 for k=0,1,... (1.2.10)
'Indeed, for arbitrary k, A* can be expressed as
Ab=Bol + ot B AT

for suitable coefficients B, .. ., B, — 1, in view of our earlier remarks on
the consequences of the Cayley—Hamilton theorem. But then

ETAB = BofTB + BLETAB + -+ + B, &A™ 1B =0,

We claim that there can exist no time k and input sequence

Ugs .+« Uy~ Which drives the system from the origin at time O to £ at
time k; it would certainly follow that (4, B) is not controliable. If such
a time k and input sequence did exist, we would have

k—1 B
6= Z Ak_J—lBuj.
j=o
Premultiplying through this equation by &' we obtain

ETE=ETA*"1Bug + -+~ + ETBu;_,

which is a contradiction since the left-hand side is non-zero, and the
right-hand side is zero by (1.2.10). We have shown that (4, B) is not
controllable. ' O

A byproduct of our proof is the fact that, if (4, B) is controllable,
then we can drive the system from one state to another in at most n

time steps. What is an input sequence which achieves this transfer?

Let x,, x, be arbitrary states. One input sequence g,..., U1 which
transfers x, at time 0 to x, at time n is provided by the formula
U,—1

Up—2 - WT(WWT)_ 1(xb — A"xa). (121 1)

U

(To apply the formula we need to know that (WWT) is non-singular:

let ¢ be any non-zero n vector. Sitice (A, B) is controllable, ETW 0.

But then ETWWTE = (ETW)(ETW)T # 0 and so, certainly, WWTE £0,
ie. WWT is non-singular.) We check that if the system is at state x, at
time 0 and the input sequence Hg,...,Un—1 defined by (1.2.11)
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is applied, then the state at time n (see (1.2.3)) is

n—1
A+ Y, ATITIBuy= A", + W col{u,_1,..., U}
R = .

= A", + WWTWWT) " Hx, — A" =%

as required. :
As an example of a system which is not controllable, consider one
involving the state equation
xk+1 = Axk 'FBuk

in which the matrices can be partitioned as follows:

[
Ay A" B, "
A= 11 12 = 1 ~ .
[0 Azz] , B [0 :I (Ai<n)

Notice that if x, is partitioned compatibly with A and B, namely as
x, = col {x{1, x{»"} then x{* and x{? satisly

X1 = Ay x4+ A + B

X2y = Ayxi?.
This system is obviously not controilable since certain components of
the state (those comprising x{)), on which the control has no effect,

can be split off from the system. A very useful fact is that we can always
interpret controllability as arising in this way (provided we permit a

suitable transformation of the state variables).

Proposition 1.2.3

Suppose that (4, B) is not controllable. Then there exists a non-
singular matrix T with the following properties: if we define

A=T AT, B=T"'B

then 4 and B can be partitioned

i le 212 i 53 El i ~
A= 12 = , <
[ 0 A, B 0 (A<n)

and (4,,, B,) is controllable.
The matrix T of the proposition provides the required transform-
ation, for if we introduce the new state vector z, defined by

Zk=T_1xk (1.2.12) '

>
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~ then substitution of (1.2.12) into (1.2.1) gives

Zk+1 = T—IATZk -+ T_lBuk = /sz"*‘ Buk.

PROOF Let W =[BiAB:...A" 'B] and let /i = rank{W}. ii can be
interpreted as the dimension of the space spanned by the columns of

" W. Since the system is not controllable, i < n. It is known that linearly

independent n-vectors, v,,...,v, can be chosen such that the first 7
vectors in the collection span the same space as the columns of W.
Now define the non-singular matrix T as

T={[vyi...v,].
It is convenient to partition T:
T=[T\\T,]

where T, =[v,}...1v;] and T, = [vnﬂ,...iu,,].
We shall show that T has the required properties. Notice first that

Av; lies in span{v,,...,v;} for j=1,....7 (1.2.13)

To see this, take v; with 1 < j < 7. v; lies in the span of the columns of
W so

for suitable m-vectors a;,...,a, (which depend on j). Then

a;
Av;=[ABi...iA"B]
. B all
But, by the Cayley—Hamilton theorem, o
A= —agl — -+ — ,A"“1 ’

where the «; are the coefficients in the charactenstlc polynom1al of A.
It follows that

T or

12 LINEAR SYSTEM THEORY 39
— 0 —_
- ol
al """

Av;=[Bi...|4""'B] | --- | ~[B...|4""'B]

ay-y

We have expressed Av, as a linear combination of the columns of W,
and so have confirmed (1.2.13). :
Now A is defined by ‘

AT=TA L (12.14)

Let us partition 4 as .

A= [Zu Z12j|)ﬁ
Ay Az

Equation (1.2.14) can be written

- A A
A[TyiT]= [Ty} TZJ[;{Ii zﬂ

[ATiAT,]=[T4,, + TyA; TyAr, + T, 45,1

Equating the first blocks we obtain AT, = Ty A, + T2 A,,. Now the
columns of AT, lie in span{v,,...,;} by (1.2.13). We must therefore
have that A,, =0, for otherw1se the v; could not be linearly
independent.

Next examine B defined by

B=TB. : (1.2.15)

Partition B as

From (1.2.15) we have

B=[T, Tz][
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Now the columns of B coincide with the first m columns of W, and so
lie in span{v,,...,v;}. We.deduce from the linear independence of
Ugy...,U, that B, =0. v '

We have shown that 4 and B can be partitioned

- :4;11 Z12 oo B, i
A = N B = .
Finally we show that (4,,, B,) is controllable. Since premultiplica-
tion by a non-singular matrix does not affect the rank of a matrix
fi=rank[B!AB....iA""'B]

=rank T~ [BiAB;....A" 'B]-

= rank B, E. Zu /’4:12 El : 1311 Ziz ot El
=rank[B,i4,,B,l... . 417 B,].

But, in consequence of the Cayley—Hamiiton theorem, the columns of

A1, B,,..., A3, B, are expressible as linear combinations of the.

columns of B,,...,A"'B, (cf. the remarks following Proposition
1.2.2), and so if the blocks A% B,,...,A17' B, are dropped from the
matrix [By:...14%; B,], the rank of the matrix is unaffected. We

conclude that

rank[B,}4,,B,i...1A17' B ] =7
So (A4,,,B,) is controllable. This completes the proof of
Proposition 1.2.3. O

_ Analternative to the Kalman rank condition test for controllability
is due to Hautus, and is described in the following Proposition.

Proposition 1».2.4
A necessary and sufficient condition that (4, B) be controllable is
rank [sI— ABl=n (1.2.16)

for all eigenvalues s of A.
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Testing condition (1.2.16) has the advantage that it avoids comput-
ation of powers of the matrix A, but requires knowledge of its
eigenvalues. The significance of Proposition 1.2.3 in our treatment of
linear systems theory is that it will illuminate the relationship between

controllability and another important system theoretic property, "

‘stabilizability’.

Notice that we could replace the condition by the requirement that
(1.2.16) hold for all complex - numbers s, and not merely the
eigenvalues of A since, if 5 is not an eigenvalue then s/-A has rank n
and so (1.2.16) is automatically satisfied.

prOOF We first prove necessity of the condition. Let us assume
that rank[s,] — A!B] < n for some eigenvalue s, of A. We must show
that (4, B) is not controllable. In view of the assumption, there exists a
non-zero n-vector ¢ (possibly complex) such that

ET[s,l — AiB] =0.
This implies that ¢4 =so¢" and ¢TB =0. But then
ET[BIAB:.. A" 1B]= [éTBisoéTBi. LshTd ETB]=0.

We suppose, of course, that A and B are real. It follows that
(Re &)"[BiAB...iA" 1B] = (Im §)'[Bi4B!... A"~ 1B] = 0. Since either
Re ¢ or Im ¢ is non-zero, we conclude that the controllability matrix
does not have linearly independent rows, i.e. (4, B) is not controllable.
~ And now for sufficiency. Let us assume that the system is not
controllable. We must show that condition (1.2.16) fails for some s.
Since (4, B) is not controllable we know (Proposition 1.2.3) that a
non-singular matrix T exists such that, if we define A =T 'AT and
B=T"1B then 4 and B can be partitioned

i

Z=|:Z(;l g;:})ﬂ, B:[%‘]M (fi < n).

Let s, be an eigenvalue of A,, and &7 be a corresponding (possibly
complex) left eigenvector, that is &T is a non-zero row vector which
satisfies . ‘

ETA,, = 5oET. (1.2.17)

We shall show that [sof — AiB] has rank less than n. It suffices to
show that the matrix

—~

—— o~ S ™S
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+

T sl — AB][T (I):I

has rank less than n since pre- and postmultiplication by square non-
singular matrices amount to performing simple row and column
operations on the original matrix, and such operations leave the rank
unaltered. But »

[OZéT]T"[sob—AEB][g ?]

=[0i¢™[sol — T"'AT:T 'B]

[ sel 0 A, AL
-wel[3 - ]
= [OESOéT - {rlzzzioj =0 ’

by (1.2.17). This means that the rows of the matrix cannot be linearly
independent and so its rank must be less than n. ‘O

Observability
Given a linear system governed by the equations (1.2.1) and (1.2.2):

Xp+1 = Ax, + Buy.
Vi =Hx,

itis natural to ask: if we know the inputs to the system for all time, and
outputs up to a certain time j, can we predict the outputs y, for time
k> j? Clearly the answer is yes if the initial state X, is known, for then
we can solve the state equation for the state and obtain the output, for
all time, from the output equation. The property of ‘observability’
concerns our ability to determine x, from the data. We can limit
attention to the situation in which the input sequence is zero since the
effect of the input is, by linearity, simply to add a known quantity to
the output; this can be subtracted off and we are back to the input-free
case.

Definition 1.2.5

Let y(xo), k=0, 1,....be the solution to the system equations (1.2.1)
and (1.2.2) for initial state x,, and zero inputs. The.system (1.2.1) and
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(1.2.2) is observable when, for arbitrary x,, there exists some time
k>0 such that x, can be determined as a function of yo(xo),
Y1(Xok+ -5 YilXo)-

Since only zero inputs are considered, the input matrix- B is
immaterial to the definition of observability. Observability is deter-

“mined then by the nature of the matrices 4 and H; for this reason we

often say (H, A) is observable’ in place of ‘the system (1.2.1),(1.2.2) is
observable’.

As with controllability, Kalman has provxded a simple rank
condition test for obscrvablhty

Proposition 1.2.6
(H, A) is observable if and only if

H

HA
rank . =n. (1.2.18)

HA'n—l

" The matrix in (1.2.18) is called the obséruability matrix. Notice that

since it is an nm x n matrix, the rank condition means that it has
linearly independent columns or, in other words, the null space of the
observability matrix comprises just the zero vector. In the event that
the output is scalar, H is a row-vector and the observability matrix is
square; here the rank condition means that the observability matrix is
non-singular. :

PROOF Observability of the system is equivalent to the property: if
the output y, to the system

Xer1 = AXe; Y= Hx,

is zero for all k then x, must be zero. Observability obviously implies

this property. On the other hand, if the system is not observable then

there exist distinct initial states xo, X, which give rise to a sequence of

states X, %, i=1,2,..., and an identical output sequence y,

k=0,1,... By linearity, the output resulting from the initial state

Xo — %o is zero; since (xo — Xo) is non-zero (x, and X, are distinct,
remember) the property above does not hold. This establishes its

equivalence with observability. .
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If the initial condition is x,, the corresponding output is
Yo=Hxo, yi=HAxy, y,= HA?x,...

It follows that the systemis observable if and only if

HA*xy=0 for all k implies xo = 0. (1.2.19)
Now the rank condition (1.2.18) means that '
H
HA | x =0 implies xo=0
HA 1
or .
Hx,=HAxy="=HA""'x,=0 implies xo=0. (1.2.20)

Clearly (1.2.19) implies (1.2.20). On the other hand for arbitrary k,
A¥=Bol + 4 fuy A"

for some coefficients By,..., 8-, in consequence of the Cayley—
Hamilton theorem (see the remarks following Proposition 1.22). It
follows that if (1.2.20) is true then :

HAkxo =ﬁ0H‘x0 +ﬁ1HAxo + - +[3,,_1HA"—1XO =0.

S0(1.2.19) is true. We have shown that (H, A) is observable if and only
“if (1.2.18) is true. , ' v O

Actually we have proved a little more than is stated in the
proposition: if (H, A) is observable then the initial state x, for the
system X4, = A%, y, = Hx, can always be determined from the
outputs yo,.-.,Ys—1 up to time n—1. An explicit formula for x, is

Xo = (M™M)~*MT col{yg,.. > Yn-1}

in which M is the observability matrix. (The matrix (M™M) is non-
singular, and so the formula makes sense, since M has linearly
independent columns.) . '

It is customary to describe two properties concerning matrices as
being ‘dual’ when one property is equivalent to the other following
transposition of matrices. The rank condition tests for controllability
and observability tell us that controllability and observability are dual
properties in this sense. In fact, (4, B) is controllable if and only if
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(BT, A) is observable. Controllability of (4, B) is equivalent to the
condition

But rank is unaffected by transposition, so this is equivalent to
: - .
BTAT

rank =n

BT( A.T)n— 1
which is precisely the rank condition test for observability of (BT, A™).
Appealing to the duality of controllability and observability is a
valuable, labour-saving device: it renders results on observability
merely adjuncts to results on controllability, and vice versa. For
example we recall (Proposition 1.2.3) that a system which is not
controllable is one from which we can split off certain state
components which are unaffected by the input (provided a suitable
transformation of the state is first carried out); we deduce from the
duality of controllability and observability that, if a system is not
observable then, after the state is suitably transformed, state compo-

nents can be split off which have no effect on the output, whatever the -

initial state. More precisely expressed we have the following.

Proposition 1.2.7

Suppose that(H, A)isnot observable. Then there existsa non-singular
matrix S with the following properties: if we define
‘ A=S8"'4S and H=HS

we have that 4 and H can be partitioned

~ jli 0 1A ~ "ﬁ“ ' ~
A—I:-Zn Zzzjl , H=[H,,i0] (fi<n)
and (#,,,4,,) is observable. '

PROOF If (H, A) is not observable then, by duality, (4T, HT) is not
controllable. So there exists a matrix T with the properties described

_in Proposition 1.2.3. It is easy to see that the matrix S =TT has the

desired properties. O

~

N
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Notice that if we transform the state: :
z,=5"1x
then the system equations (with zero input)
Xew1 = AXy Y= Hxy

become
Zk+l(= S-lASZk)= Azk
yk(= HTZk) = ﬁzk.
If z, is now partitioned as z,=col {z1,2()} compatibly
with the partitioning of 4 and H, we have that z\V satisfies
Z) = 21 12
Y= A2,
We see that there exist components of the transformed state (those
comprising the vector z{») which have no effect on the output.
Likewise, the Hautus test for controllability (see Proposition 1.2.4)
translates immediately into a test for observability, via duality.

Proposition 1.2.8
(H, A) is observable if and only if

rank[ 21';'4 ] =n

for all eigenvalues s of A.

1.2.2 State feedback
Suppose that the inputs to a system with state equation
X1 = Ax, + By, _ (1.2.21)

are chosen according to a feedback control law which specifies the
input at time k as a linear function of the state at time k:

U, = Kx,. - (1.2.22)

Then the state of the system is governed by the equations obtained by
substituting (1.2.22) into (1.2.21), namely :

Xp+1 = (A + BK)xk.
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Many significant qualitative properties of the state sequence
Xg,X1,... resulting from application of a feedback control law are
expressible in terms.of the eigenvalues of the ‘closed-loop system
matrix’ A + BK: stability, response decay rates, frequencies of natural
modes, for example. It is of interest then to know when the eigenvalues
of A+ BK can be moved to arbitrary locations by suitable choice of
the feedback matrix K. (Of course we must limit attention to
eigenvalue locations which occur in complex conjugate pairs; .the
characteristic polynomial of 4 + BK has real coefficients and conseq-
uently the eigenvalues must occur in complex conjugate pairs,
whatever K.) Pairs of matrices (4, B) defining systems for which this is
possible are called pole-assignable. The terminology reflects the fact
that, in much of the control engineering literature, eigenvalues are
called ‘poles’.

Definition 1.2.9 ‘,

(4,B) is pole-assignable when, given any nth-degree monic poly-
nomial p(s) = oo -+ ;s + - + &y 18"~ ! +5" (with real coefficients),
there exists a (real) matrix K such that (4 + BK) has characteristic
polynomial p(s). ‘

We can expect the presence of some relationship between the
notions of pole-assignability and controllability since they are both
concerned with the influence of inputs to a system on the resulting

state sequence. It is one of the most striking results in linear system
theory that the two notions are in fact equivalent.

Theorem 1.2.10

A necessary and sufficient condition for (4, B) to be pole-assignable is
that (4, B) be controllable. '

PROOF OF NECESSITY Suppose that (4, B) is not controllable. By
Proposition 1.2.3, there exists a non-singuler matrix T such that,
taking A =T ' AT, B=T"'B, we have -

- A, Ay, i ~ [By ) o
A= 11 12 —_ 1 .
l: 0 /.1.22 B 0 (Ai<n)

Let K be arbitrary. We partition K and T compatibly with“the
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partitioning of A and B

Tu ’T12 .
= , K=[KK,]
T l:Tu Ty [KiiK,]

For any compiex number s, we have
det[s] — A — BK]=det{T '[s] —A— BK]T}

(since det S;S, = det S, detS, for square matrices S.,5,)

=det[sI—A—-BKT] » :
 [sl— Ay = By(K Ty + Ko Top)i— A — By(K Tha + Kszz):]
=det| - ' -
0 ! sl—A,,
_ det(s] — A, — By(Ky Ty + Ko Ty))det(s] — A30)

(by the properties of the determinants of block matrices). We see
that the factor det(sI — A,,) cannot be removed from the character-
istic polynomial of (4 + BK) by choice of K, and so (4, B) is not pole-
assignable. Our conclusions, otperwise expressed, are that pole-
assignability implies controllability.

PROOF OF SUFFICIENCY Sufficiency of the controllability con-
dition is rather more difficult to establish and it is convenient to break
the proof down into a number of steps. '

Step 1 We show that (4, B) is pole-assignable when the input is
scalar valued (i.e. B=b, an n-vector) and when A and b take the
special forms

0
o 1.0 - :
A= o 1 , b= 0
—ao cee —a,,_1 1
In this case, for any row vector g* =[q; ---4a]
0
0 1.0 :
A+bg" = O 1 |+ gl
—4g ... Ty 1 ’
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Now this last matrix is a matrix in ‘companion form’; it is known

that coefficients of its characteristic polynomial p(s) can be read off

. the bottom line: p(s) ="+ (@,_, — q,)s" "} + - +(ao — q,). We see
that the coefficients of the characteristic polynomial of 4 + bg™ can be .

arbitrarily assigned through choice of g'.

Step 2 Suppose now that A is a general n x n matrix and b an n-
vector, such that (A4,b) is controllable. By introducing a state
transformation which brings us back to step 1, we show that in this
case, also, (4, b) is pole-assignable.

Let p(s) = 0tg+ ;s + *** + &, 8"~ ! + 5" be the characteristic poly-
nomial of A. Consider the vectors

b, Ab, A%b,..., A" 1b.

These vectors are linearly independent since (A4, b) is controllable. The

following linear combinations of these vectors -are also linearly -

independent:

ey=A""*b+a, A" b+ - +a;b,
e, =A""2b+ 0, A" 3b + -+ azb,

e,=b. (1.2.23)
From (1.2.23) we deduce that
e = A€y 1 + e,

‘and so
Aek+1=ek—0(ke,,, k=1,...,n""1. (1.2.24)

Also from (1.2.23), and the Cayley~Hamilton theorem,
Aoy = (A" + oy A" 1t s + oy A)e, = — e, (1.2.25)
Equations (1.2.24) and (1.2.25) can be organized as follows:

, 0 1. O
A[eli...ie,,]=[eli...ie,,]l: O 1 }
1

- ao cee - 0(,,_
From the last equation in (1.2.23) we have
| 0

S
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Now take the non-singular matrix T to be

T=[ey...le,). :

We have shown that, if A =T 14T, b=T™'b, then
0 1.0 ; '
A=| o 1t | b=y} (1.2.26)
—0(0 ces —Ot,,..l 1 )

Now consider the characteristic polynomial of the closed-loop system
matrix when the feedback control law is u, =" T~ 'x, for some n-
vector g. This is
det(sI — A—bg"T~ 1) =det{T Y sI — A—bg" T~ 1T}
= det(s] — 4 — bq").

The coefficients of this characteristic polynomial can be arbitrarily

assigned through choice of g by (1.2.26) and by the results of step 1.
Step 3 Sufficiency of the controllability condition has been proved

when the inputs are scalar-valued. We now prove a lemma which

reduces the general vector inputs case to that of scalar inputs.

Lemma 1.2.11

If (4, B) is controllable, there exists an m x n matrix K and an m-
vector v such that (4 + BK, Bv) is controllable. :

First of all we prove the lemma. Suppose that (4, B) is controllable.
Choose any vector v such that Bv # 0. (Such a v exists since (A, B) is
controllable and therefore B#0.) We first show that an input
sequence U, .. ., U, , and a state sequence xo,..., X, can be chosen
such that

Xps, = Axy+Bu,  fork=0,1,...,n—2,
Xo=Bv (1.2.27)

and xo,...,X,_ are linearly independent. We claim that the choice
can always be made as follows: x, (= Bv) is given, we choose any u,
such that x, = Ax, + Bu, and x;,x, are linearly independent, we

_choose any u, such that x, = Ax, + Bu, and x,,Xx;, X, are linearly
" independent, and so on all the way up to u,_,,x,—;. We argue by

contradiction; if this were not possible then, for some k<n—1, we
would have h
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Ax, + Buespan{x,,...,x,}  forallu (1.2.28)
By considéring the case when u =0 we see that o
Ax espan {xg,..., X} ‘ (1.2.29)

But then (1.2.28) implies
Buespan{xg,..., X} for all u. (1.2.30)

Since Ax;=X;4; —Bupj=kk—1,...,0, we see from (1.2.29) and
(1.2.30) that S

Axjespan{x,,...,x,}  forj=kk—1,..,0. (1.2.31)

Let & be a non-zero n-vector orthogonal to Xo,..., X (such a vector
exists since k <n— 1). In view of (1.2.30) and (1.2.31),

£ [BiAB..... A" 'B] =0.

This contradicts the controllability of (4,B). It follows that
XgsersXn—1s Ugs--+sUs—o €aN be chosen to satisfy (1.2.27).
Now define K by

K =T[uoiuy .. itty—1] [xo!X i iXgm1]™ !

in which u,_ , is any m-vector (the matrix inverse exists since the x; are
linearly independent). Clearly '

K[ Xo. . -%p- 1] = (ol -ithp—1]

and so Kx, =u, for k=0,...,n— 1. It follows now from (1.2.27) that

Xpr1=Ax,+BKx,, i=0,...,n—2,

Xo = Bo.

Solving these equations for the x; we obtain

X =(A+BK)}Bv), k=0,...,n—1.
Since the x, are linearly independent we conclude that the matrix

[Bvi(A4 + BK)BUv.. (A + BK)""Bv] '

- has rank n. But this is the controllability matrix for (4 + BK, Bb); we

have found K and v such that (4 + BK, Bv) is controllable. This proves
the lemma. ‘ ’

We can now conclude proof of the theorem. Let (4, B) be con-
trollable. By the lemma there exists K and v such that (4 + BK, Bv) is

"LM.E. C.C.
BIBLIOTECA
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controllable. Let p(s) be an arbitrary monic polynomial. By the result
of step 2, g can be chosen so that

p(s) = det[sI — (4 + BK) — Bvg"]
=det[s] — (4 + B[K +vg"])].

We see that the feedback control law u, = (K + vq")x, yields a closed- -

loop system matrix with characteristic polynomial the arbitrary
monic polynomial p(s); (4, B) is therefore pole-assignable. 1

Let us recall that, when the feedback control law
U = ka,

specified by the matrix K, is applied to a linear system with state
equation :

‘ Xg+1 = AX + Buy,
there results a closed-loop state equation
X1 = (A + BK)x,, : (1.2.32)

and the concept of pole-assignability arises when we study whether K
can be chosen so that the closed-loop state equation (1.2.32) has good
characteristics. Of course, our interpretation of ‘good’ will depend on
the application at hand. But often the components of the state
represent deviations of certain variables from desired values, in which
case a minimum objective in selection of the feedback control law is
that the deviations diminish as time increases. This objective is
achieved if the mattix A+ BK is stable, in the sense that its
eigenvalues lie in the open unit disc', for then the state x;, generated by
(1.2.32), decays to zero as i tends to infinity. Systems for which we can
arrange that 4 + BK is stable therefore deserve special attention: they
are called ‘stabilizable’.

Definition 1.2.12

(A, B) is said to be stabilizable when there exists an m x n matrix K
such that the eigenvalues of 4 + BK are contained in the open unit
disc. '

The ‘open unit disc’ referred to here is the open subset {{:]¢} < 1} of the complex plane.
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[t is often difficult to test directly whether matrices (4, B) defining a
particular linear system satisfy the conditions in the definition, since
determination of a suitable matrix K is involved. Fortunately a
simpler test is available. This is a variant on the Hautus controlla-

bility test (see Proposition 1.2.4). It is expressed directly in terms of the -

matrices A and B but does, admittedly, suffer from the disadvantage
that extraction of the eigenvalues of A is involved.

Proposition 1.2.13

A necessary and sufficient condition that (A, B) be stabilizable is

rank[(sI — A)Bl=n

for all eigenvalues of A outside the open unit disc. (1.2.33)

Comparison with the Hautus controllability test confirms that
stabilizability is a weaker property than controllability; indeed
controllability requires the rank condition in (1.2.33) to hold for all
eigenvalues of 4 rather than merely those outside the open unit disc,
as here.

It is clear from the definition of stabilizability that (4, B) is always
stabilizable if 4 is a stable matrix (for then stabilization is achieved for
zero input). At the other extreme, when all the eigenvectors of A lie
outside the open unit disc then stabilizability and controllability are
equivalent; this follows from Propositions 1.2.4 and 1.2.13.

prROOF To prove necessity, let us suppose that the rank condition
(1.2.33) is violated: this means that there is some eigenvalue s, of A
lying outside the open unit disc, and a (possibly complex) non-zero n-
vector & such that ‘

ET[sol — AiB] =0.
This condition can be written
ETA=5,(T and ¢TB=0.

It follows that, for any m x n matrix K, A + BK has an eigenvalue
outside the open unit disc since

E 5ol = (A + BK)] = 50" — &'A — E"BK =0.

So (A, B) cannot be stabilizable, and thus the condition is necessary.

(
;
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Let us now assume that the condition (1.2.33) is satisfied. Let
$-,Z* denote the collection of eigenvalues of A lying inside and
outside the open unit disc respectively. A basic result in matrix theory
(see Wilkinson, 1965, p. 486) tells us that a real, non-smgular matrix
T ex1sts such that

T-1AT =1 -' (1.2.34)

where A is a matrix which can be partitioned

o A 0
A= 1t v
[212 AZ]

Here A, is a square matrix, of dimension n* and having eigenvaiues
=+t and A, is square matrix, of dimension n~ and having elgenvalues
7. Condition (1.2.33) is equivalent to

. :
rank T [sI — AEB][O (I):I =n, forall seXt,

which can be written

sI—A4 0o \!B '
k 1 - |~1 = +
ran [( _4, sI—Az)iBz>:I n, for all sexX™.

Here

is a partitioning of T~ 'B compatlble with that of 4 and the I are
identity matrices. The last condition is equivalent to

rank[(gzZl sli)/%)ii(%)jl:n “for all seZ*

since sI — A, is non-singular for seZ*, or .
rank[(sI, — A)iB,]+n"=n,  forall seZ*
which can be expressed as ‘
rank[sl, — 4,:B;]=n*  for all sez*

since n~ + n* = n. By Hautus’s criterion (Proposition 1.2.4), (4,,By)

is controllable. We conclude from the pole placement theorem -

(Theorem 1.2.10) that there exists an m x n* matrix R, such that

e e s e e e R

i - pemrinies
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A, + B,R, has eigenvalues in the open unit disc. Now let
K = [KIEOJT-I,

and consider the eiéenvalues of A+ BK. These are the eigenvalues

alsoof' _
a 0 B
T~ [A+BK]T=| 5! } [J} R0
[ + ] I:le ZZ + BZ [ LJ

=|:(Z1+§1K1) O:I o
(4,2 + B;K;) A,

However, due to the upper right block zero, this last matrix has
eigenvalues those of 4, + B, K, together with those of A,,all of which
lie inside the open unit dxsc So A + BK is a stable matrix. We have
shown that condition (1.2.33) is sufficient for stabilizability. O

A dual concept to that of stabilizability is detectability.

Definition 1.2.14

(H, A) is detectable when there exists an n x r matrix M such that all
the elgenvalues of (A + MH) lie in the open unit dlSC

Bearing in mind that transposition does not affect the elgenvalues
of a matrix, we see that (4, B) is stabilizable if and only if (B, AT is
detectable. Indeed, if (4, B) is stabilizable so that there exists a matrix
K such that A + BK is stable, then (BT, A") is detectable, since
AT + KTBT (= (A + BK)") is stable. In a similar manner we show
that detectability of (BT, AT) implies stabilizability of (4, B).

The duality between stabilizability and detectability enables us to
deduce from Proposition 1.2.13 the following characterization of
detectability. '

Proposition 1.2.15
(H, A) is detectable if and only if

rank [SII; A:l =n

for all eigenvalues s of 4 outside the open unit disc.
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The terminology ‘stabilizability’ is a natural one, but ‘detectability’
requires a little explanation. This we now supply. Consider a linear
system with zero input -

Xivy = AX;
yvi=Hx;. _ (1.2.35)

The system parameters which specify the matrices H, 4 are known
but the initial state, x,, is not. Suppose we wish to extract informa-
tion about the state x; at time i, from observations of present and
past outputs. A simple, and widely used, procedure is the following:
we take as estimate %, of x, the. output of a replica of the system driven
by an input which depends on the discrepancy between the observed
output y, and the output we would observe if x; coincided with %,
namely H%,. More precisely stated, %, is generated by the recursive
equations
Rpa1 =A%+ K(y — HRy)
Xo=0 (1.2.36)

for some suitably chosen matrix K. The estimate of the state obtained
in this way is called an observer. It is a deterministic analogue of the
estimate supplied by the Kalman filter in a stochastic setting, which
we shall study in detail in Chapter 3.

The error &, incurred when the true state x, is replaced by X,

& =X, — Xy,

is governed by the equations (obtained by subtracting (1.2.36) from
(1.2.35)):

A
: A 5 i = Xy - Xib
s1=(A—KH), A
Sa= X : 0 “Xp - Xy
0 o Qo =¥y

The error can be made to decay to zero, for arbitrary initial state, if
and only if K can be chosen in such a way that (4 — KH) is a stable
matrix. This is precisely the condition that (H, 4) be detectable. Thus
the detectability condition means that the state can be detected, with
error which decays to zero, at the output of an appropriately designed
observer. ‘

Notes

Section 1.1.1 There are many good introductory texts on probability,
for example Larson (1969). More advanced texts, such as Kingman
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and Taylor (1966) or Chow and Teicher (1978) involve measure

theory, which is necessary for an adequate treatment of the more.

technical parts of the subject. In particular, the existence of con-

* ditional distributions for random vectors is proved in Theorem 2,

Section 7.2 of Chow and Teicher (1978).

- Section 1.1.2 A very readable introduction to stochastic processes

and their applications in time series modelling is given by Chatfield
(1979); at a more technical level, Wong (1970) can be consulted.
Stationary processes and spectral analysis are covered by Cramér and
Leadbetter (1967), Hannan (1970), Priestley (1982) and Wong (1970).
Hannan in particular gives detailed coverage of the multivariable
case. :

Section 1.1.3 Convergence of sequences of real numbers is part of
‘real "analysis’; see for example Bartle (1964). Convergence of se-
quences of random variables is discussed in any book dealing with
measure-theoretic probability, such as Kingman and Taylor (1966).
The Borel-Cantelli lemma (Lemma 1.1.13) is given by Chow and
Teicher (1978, Lemma 2, Section 2.2).

The ergodic theorem which we give as Theorem 1.1.15 is adapted
from a continuous-time result of Cramér and Leadbetter (1967,
Section 5.5).

Section 1.2.1 See Anderson and Moore (1971), Chen (1970), Kailath
(1980) and Kwakernaak and Sivan (1972) for supplementary reading
in linear systems theory. The authors of these books occupy

_themselves for the most part with continuous systems but, at least as

far as the topics we consider are concerned, the continuous-time and
discrete-time theories run in parallel. Suitable background in linear
algebra can be acquired from a number of texts, for example Lang

(1979). For a more advanced treatment, we refer to Gantmacher -

(1964).

Kalman and his co-workers (1963) provided a key early paper on
controllability. The rank tests for controllability had, however,
appeared independently in the literature as a technical hypothesis in
optimal control theory (LaSalle, 1960). The concept of observability is
due to Kalman (1960). The condition for controllability, which we refer
to as the Hautus condition, first appeared in Hautus (1969).
Section 1.2.2 Early proofs of the pole assignment theorem, for multi-
input systems, were provided by Popov (1964) and Wonham (1967).
Wonham drew attention to the significance of stabilizability and
detectability in quadratic cost control and linear filtering, and the

—~
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characterization of these properties which we provide are implicit in
his book (1979).
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CHAPTER 2

Stochastic models

All science is concerned in some way with prediction, since the
ultimate test of a scientific theory is its ability to predict the results of
experiments which have not yet been carried out. In the context of
engineering systems, a model is some description of a system which
enables us to predict its behaviour when it is subjected to certain
classes of inputs. Models may be divided into two categories, internal
and external. Internal models describe the complete structure of a
system, possibly including parts of it which do not contribute directly
to observable outputs, whereas external models are concerned solely
with describing the input/output behaviour of the system. There are
two ways in which models may be arrived at: by an analysis of the
components of the system using physical laws, or by a ‘black box’

approach whereby the contents of the ‘box’ are inferred from
experimental data. In the former case the laws involved are those of

Newtonian mechanics, electromagnetism, thermodynamics, etc. In
elementary situations such as, say, describing the motion of a
pendulum, Newtonian mechanics gives such good predictions that
the distinction between ‘model’ and ‘system’ is almost forgotten.
However, in more complicated cases — describing the motion of an

aircraft, for example — it will be clear that the equations one writes.

down are only approximations, valid over a certain range of
operating conditions. Models arrived at in this way are generally in
the first instance internal ones, in that they involve the ‘states’ of
various components comprising the system regardless of whether
these states are ‘observable’. An external model — which is, after all,
less detailed — can often be derived from a given internal model; we
study this question in Section 2.4 below. On the other hand, a model
obtained by the black-box approach is necessarily external since no
other information is available about the system than its input/output
behaviour.

In this book we are mainly concerned with input/output models
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:md how to obtain them by data analysis. In this chapter, however, we
introduce some general classes of models, internal and external, and
study their properties. We shall deal only with linear models, that is to

say models involving a linear relationship between inputs and

outputs. Of course no real system is exactly linear, but many are
approximately linear at least with respect to small variations around
some operating point which are often what we wish to study. Also
there cannot be any satisfactory general theory of non-linear models —
this class is simply too big to be treated as a whole — whereas for
linear systems a unified theory is possible.

A system is deterministic if its input together with certain initial
conditions and times uniquely specify the output. Otherwise it is
stochastic. We explain thc non-unique response to input signals by
supposing that the system has a random ‘noise’ input in addition to
possible control inputs. Thus denoting input, output and noise by
u, y, w respectively we represent the system as in Fig. 2.1.

The actual noise in a system may well be generated internally, say
by thermal noise in electronic components, but conceptually thisis not
different from regarding it as being injected by some external source
(in either case, it is not supposed that the noise can be directly
measured). An important restriction on the class of systems we
consider is that the noise should be additive. This excludes some quite

" natural phenomena such as randomly varying gains but is necessary if

we are to stay within the framework of linear systems. In fact if the
basic input/output relationship is linear and the noise is additive then

" the noise can always be regarded as being added at the output, giving

us a somewhat simpliﬁed model structure as depicted in Fig. 2.2,
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A full description of a system model in this form must specify

(a) The input/output behaviour of system S; and,-
(b) The statistical characteristics of the noise w. "

So far we have said nothing as to the nature of time. Here we have a
choice between continuous-time and discrete-time models, and a viable
theory can be developed either way. In this book: we only consider
discrete-time models. These arise in practice either because the data
for the system under study is presented in discrete form (for example,
monthly or quarterly economic data) or because we wish to discretize
an underlying continuous system for purposes of computer control.

If 2 model is to be identified from data then it is essential that it be
chosen from a finitely parametrized model set, that is to say a set

{M(6): 0D} indexed by a finite-dimensional parameter 6. Choice ofa

parameter 6§ from D then specifies the model M(6) uniquely. A broad
class of discrete-time linear systems with this property is that of state-
space models, such a model being represented by the equations

xk+1 = Axk + Buk
Y = Hx,.

Here x, is the state of the system at time k and u,, y, are the input and
output respectively. If x,,u,y, are of dimension n,m,r then this
model is specified by a parameter vector 8 of dimension n* + nm +
nr + n whose componénts are the elements of the matrices A, B, H
together with an initial state vector x,. All of the system models we
consider below can be represented in this form, though they may be
parametrized in some other way. S

To complete our description of the model of Fig. 2.2 we have to

‘specify’ the noise w. The most precise specification would be to give

the finite-dimensional distributions of the process {w,}. Generally,
however, this is overambitious: estimating the distributions of
random variables is not an easy task, and. usually we will only be
concerned with properties involving means and covariances. One can

suppose that {w,} has zero mean (the mean is a deterministic sequence .

which can be modelled as part of the system S), which leaves the
covariance function to be specified, or equivalently, if w, is stationary,
the spectral density function. The class of all covariance functions is,

~ however, ‘too big: again for model-fitting purposes we must have a

finitely parametrized set of covariance functions. How to obtain
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White noise —» S

U ——>m S

Fig. 2.3

useful classes of finitely parametrized covariance functions is in fact a
major topic of this chapter. The general strategy is to start from a very
simple process — white noise —and then obtain other processes by
‘filtering’ it, i.c. passing it through a linear system. The coefficients of
this linear system then specify the noise covariance. This approach
gives us the model of Fig. 2.2 in a ‘symmetrized’ form, as shown in
Fig. 2.3. In terms of parametrization the whole model is reduced to
two linear systems S and S, the coefficients of which specify the
input/output relation and the noise spectral density respectively.

The chapter is organized as follows. In the first two sections we set
up the mathematical machinery which will permit us to make sense of
and analyse processes generated at the output of stochastic dynamical
models expressed as difference equations. Considerable attention is
then given to ARMA models, the important class of noise models in
which the noise process is taken to be the solution of a difference
equation driven by white noise. We investigate their properties and
examine the nature of the assumptions on the noise process implicit in
choice of such models. Finally, we incorporate the noise model in a
linear system, to obtain a model of the overall stochastic dynamical
model, and give some related formulations.

2.1. A general output process

Many stochastic models incorporate as a basic building block an r-
vector process {y,} which results from passage of another, l-vector
process {e,} through a linear system. It is necessary to attach a precise
meaning to processes which arise in this way and to examine their
properties. For concreteness we shall refer here to the y, and ¢, as
‘outputs’ and ‘disturbances’ respectively, although in applications of
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‘the results of this section they will often have interpretations other
thantheactual outputs and disturbances associated with thestochastic
dynamical system in question. Initially we adopt a somewhat abstract
framework for definition of the process {y,} because this is convenient
‘foranalysis. Weshall seein the next section that our theory is consistent
with an intuitive definition of the output of a system defined by
stochastic difference equations.

Let e, keZ, be a collection of l-vector random variables. Let
T(o) be an r x [ matrix of rational functions in the complex vari-
able ¢. We can represent T(o) in terms of a scalar polynomial g(o)
in ¢ and r x | matrices G,,..., G, thus:

T(0) = [g(6)] " '[Go + G0 + -+ + G,o"]. (2.1.1)

We wish to consider the process {y,} obtained by passing the dis-
turbance sequence {e,} through a linear system with ‘transfer
function’ T(z™1):

yk=.T(‘z"ll)e,,, kez. (2.1.2)

Here z~! is the backward shift operator defined by z™le:=
e,—,. Powers of z~ ! are defined recursively by z~¢* Ve,:= 274 (z "),
so that z ‘e, = e,_;. When g(6) =1, T(0) is a polynomial in ¢ and
(2.1.2) is simply an operational way of stating that y, is given by

llM;

Y= (Gz")ek_ Z Giegi-

i

When g(o) %1 we express T(o) in the form of an infinite-degree
polynomial as in (2.1.5) below and interpret (2.1.2) as the corres-
ponding infinite sum. This approach can be made precise under the
following hypotheses.

There exists a number ¢ > 0 such that
Ellef*<c,  forall keZ.

‘Here d is positive integer which will vary with different applications.
Also, some representation (2.1.1) can be chosen for T(z~ 1) such that

(2.13)

o — g(0) has all zeros outside the closed unit disc.! (2.1.4)

TThe ‘closed unit disc’ is the closed subset {£:]{] < 1} of the complex plasie.
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Take To,Tl, .to be the matrix coefficients which result from

formal expansion of T(g) about ¢ = 0:
T(6) = Ty + Ty10 + To0% + *** (2.1.5)

Such an expansion is clearly possible under hypothesis (2.1.4). The
T, are called the Markov parameters associated with the transfer
function T(z™1).

We now are ready to define the solution {y,} to the equation (2.1.2).
It is

N
yk= hm z Tiek_;. (2.1.6)

N-w j=0

The limit here is taken in the dth mean. (The positive integer d is that

of hypothesis (2.1.3)). The following lemma tells us that the limit exists
and that therefore the definition makes sense. It provides also the
information that the y, have uniformly bounded dth order moments.

Lemma 2.1.1

Suppose that hypotheses (2.1.3) and (2.1.4) are frue. Let Ty, T3,... be
the Markov parameters of T(z ") (see (2.1.5)). Then the partial sums

N .
sk(N)= -Zo‘Tiek-i’ N= 1,2,...

. converge to a limit s, in the dth mean as N — oo, for each keZ, and

there exists a constant ¢; > 0 such that
E|sf¢<¢c,, forall keZ

prOOF Taking note of hypothesis (2. 1 4), we deduce from Propo-
sition D.3.3 of Appendix D that there exist numbers ¢, >0 and

1€(0, 1) such that
I T < epdly i=0,1,... 2.1.7)

(The norm here is the spectral norm; see Appendix D.)
For k an integer and M, N non-negative integers such that M < N,
define

N
g(M,N)= __ZM Tiex ;-

Ve N ~~ ~ TN
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We have
d

. N
lledM, N < ( ;M I T "ek—i”>

i=M

. N \d-1/ N .
S_c%(iZMl‘) (i;Mzine.-nd)

by the generalized Holder inequality (see Appendix E).
Taking expectations and noting hypothesis (2.1.3) we obtain from
this inequality: ;

, N d
ng( ) A*uek-,-Il)

by (2.1.7)

ElledM, N)ll"Scc§< 5 A")d
i=M

which implies
EllsfM, N)|[4 < cc 24+ M /(1 — A)%. (2.1.8)
We see that :
sup EleM, N)|'~0 as M~ © (219

for each keZ. Noting that g, (M, N) is related to the partial sums by
&M, N) = 5(N) — s,(M — 1}

we deduce from(2.1.9) that {s,(N)}y is a Cauchy sequence in dth
mean, and therefore that the limit in dth mean lim s,(N) exists.
N-w

Since s,(N) = £(0, N) we deduce from (2.1.8) that
E|sdN)|“<c,, forall keZ,N 20,

where ¢, = cc4 2%/(1 — A). But s,(N)— s, in dth mean. It follows that

Elsd<c;. | m

An important feature of the relationship between disturbances and

‘ outputs provided by the transfer function T(z~!) is that the effect of

the disturbance e, (at time k) on subsequent outputs (y;, Vis 1,-..)
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falls off exponentially. In the analysis of identification algorithms
transfer functions T,(z™!) need to be considered which depend on a
parameter 6. Here, under suitable hypotheses, the exponential decay
is uniform with respect to the parameter 0, as we now show.

Let {y,(0)} be defined by :

V0)=Toz Ve, keZ (2.1.10)
Ty(z™ )= [gsz™ )17 Golz™ ey (2.1.11)

in which @ is a parameter which ranges over some compact subset 2 of

R? In (2.1.11), g4(z~ 1) is a polynomial in z™*:

go(z™ ") =go(0) +g:1(0)z™" + -+ +g,(0)z™"

with coefficients gy(),...,g.(0) real numbers which depend con-

tinuously on 6. Gy(z™?) is a polynomial in z™%:

Go(z™Y) = Go(6) + G1(6)z™" + -+ + G, ()",

with coefficients r x [ matrices Go(f),...,G,(f) which depend con-
tinuously on 6. {,} is a sequence of l-vector random variables. The
notation y,(6) emphasizes that the solution depends on the parameter
0.

1t will be assumed that our earlier hypotheses assuring that (2.1.10) -
does indeed define {y,(f)} are in force, namely there exists a number
¢ >0 such that ' :

Elel*<c, forall keZ (2.1.3)
(d is some fixed positive integer), and.

for all 0€2, o — g4(0) has all zeros outside the closed unit disc.
(2.1.12)

Proposition 2.1.2

Consider processes {yy(0) }xez, €9, defined by (2.1.10). Suppose that
hypotheses (2.1.3) and (2.1.12) are true. Then there exist constants
¢;3 >0, 1€(0, 1) such  that

Ely(0)¢<cs ‘ZOA‘E le.—;I14  for all fe2.

prOOF Let To(0), Ty(0),... be the coefficients in the formal expan-
sion of [ge(6)]™! Gylo) about o =0. By Proposition D.3.3 of
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Appendix D there exist ¢, >0 and Ae(0, 1) such that

IO <cd; for 0e2,i=0,1,... .  (2113)
Now define
) N
sn(0, k) = 'Zo Ti(O)ex-:.
We have
N d
Isn(@, k)14 < ( ._Zo I THOY N - ex—: l|>
: N . d
<d( % vl
by (2.1.13)

N  \d-1 N
Sc‘i( ) ll) ‘—Zo Alleg-ill?

by the generalized Holder inequality (Appendix E).
Taking expectations, we deduce that

N .
Elsy(6,0)11'<c5 .Zo NE| €|

where ¢, = ¢4 (1 — 4)~©~1), Passage to the limit N — co on both sides
of this inequality gives '

E| y ||d ¢ 'Zo AME| €r—; 14
=

since, by definition of y,(), sy(6, k)= y,(6) in dth mean and since, by

hypothesis, {E | e,—;[“}{2o is a sequence of uniformly bounded

numbers. |

thice that Proposition 2.1.2 provides bounds for changes in the

output {y,} resulting from changes in the disturbances {e,} since the -

system of equations (2.1.10) is linear; it will be in this guise that
Proposition 2.1.2 will prove most useful.

2.2 Stochastic difference equations

In this section we examine systems in which the output sequence {y,}
is related to the input sequence by difference equations:

Aoyi+ Aryu—y + "+ Apyi—n=Boey + Bigp g+ + B.ex-u
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where A4,,..., A, are r x r matrices and B, ..., B, and r x  matrices.

Itisassumed that 4,isnon-singular. Weshall show thatinitialdatacan

be supplied in the form of the finite past of both {y,} and {¢,} (here the
definition of {y,} in terms of {e,} is elementary) or alternatively in the

form of the infinite past of just {e,} (in this case we must draw on the"

theory of Section 2.1). The output processes corresponding to these
two different frameworks will then be related.

Recall that we interpret z~* as the backward shift operator: more
precisely if {u} is any sequence then z~'{u,} denotes the same
sequence shifted backwards by one time unit, ie. the ith element of
z7 {u,} =u;_y, for all i. Powers of z~! are defined in the followin
manner: the ith entry of z7"{w,} =u;_,, forall i. - ‘

The difference equations can be expressed in terms of the shift
operator as

A(z" Yy, = B(z™ Ve, ' (2.2.1)

in which A(z™!), B(z™') are polynomials in z™! with matrix
coefficients:

Az N=A;+Az" 4+ + Az™"
B(z"Y)=By+B;z ' +--+B,z™"

Eqn. (2.2.1) should be regarded as shorthand for the equation for
sequences

‘,Z"‘:o Az™Hy = ‘Z':o Biz"H{u,}.

Here Ao{y,} denotes {4y} etc., and sums of sequences are defined in
an obvious manner.

Notice that our formulation does not restrict us to consideration
of situations in which the output and disturbances are subject to
the same number of delays, since we can take certain of the 4; or
B; to be zero. ‘ 4

Initial data must be supplied if the outputs y,,k=0,1,... are to

be well-defined, given ¢, k=0,1,.... Two forms of initial data are
commonly considered. On the one hand, we can take (2.2.1) at face -

value as a difference equation which we can rewrite
Y= A(;l[ _Alyk—l -t Anyk—n + BOek + o Bnek—nl .
k=0,1,.... , (222

Initial data y,, k= —1,—2,..., —n,e,k=—1,—2,..., —n which
may possibly be random, is appropriate here. Knowledge of this
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initial data, together with the disturbances ¢, k=0,1,... clearly
permits us to generate the outputs y,, k =0, 1,... by recursive solution
of equations (2.2.2). On the other hand, we can take as initial data the
‘infinite past’ of the disturbance process at:time 0, namely
€_y,e_s,.... In this setting restrictions must be placed on the
equation parameters the disturbances and the initial data, in order
that they well-define the output {y,}.

In order to interpret (2.2.1) when the initial data is the mﬁmte
past of {e,} we rewrite (2.2.1) as

ye="T "ew 23

T =[g(")]7*6E™)
in which g(z™*)=det[A4(z™")] and G(z™')=(Adj[A(z"")])B(z™").
Then y, is defined by the limit (2.1.6). This is possible, in view of
the theory of Section 2.1, provided there exists a number ¢ > 0 such
that

Elell“*<c, keZ (for-some d) 224

and
the zeros of o —det A(c) lie outside the closed unit disc. (2.2.5)

Now suppose that the initial data is the infinite past of {e,}.
Assuming of course that (2.2.4), {2.2.5) hold, we shall show that in
this case y, satisfies

Ve=Ag [— Ay — " — AYk—n+ Boer + -+ + Buey ],
k=0,1,.... 4 . (2.2.2y

The last equation can ‘be interpreted as a recursive equation for
Yo»V1,-.. With (random) starting values e_j,...,e_pY—15505 Yn
(The random variables y_,...,y_, are obtained from (2.2.3)). In
other words, the process yo,¥;,... defined by (2.2.3) (and (2.1.5))
coincides with the solutions to the recursive equation

Az Y =Bz Ve, k=1,2,...
provided the initial data on the variable y, are chosen appropriately.
Of course the converse'is not necessarily true. Definition (2.2.2) makes
sense if merely det [A(0)] # 0 and arbitrary initial data y_,..., y_,,
e_1,...,e_, are given, whereas the definition provided by (2.2.3) can
be used only when o —det[A(c)] has zeros outside the closed unit
disc and when the initial output data y_,,...,y.., is compatible
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with past disturbances e_y,e_,,..., in the sense that

yk=‘T(z'1)ek, k=—1,...,—n
One instance when they are compatible is when e_; =0,e_,=0,...
andy_,=0,y_,=0,...,y_,=0; the difference equations
Ve=Ag [A1Yi-1 + " + Ayy—n+ Boer + "+ By _p), k=0,1,...
=0 e, =0, k=-—-1,...,—
generate the same process y,, k=0,1,...as

=T e, k=0,1,....

provided e, =0, k= —1, —2,..., and the zeros of - det A(0) lie
outside the closed unit disc. Thxs example is important since it is
natural to formulate models for identification as difference equations
with initial data specified over a finite time interval, yet the analysis
is often simpler if we treat the output as a function of the infinite
past of the disturbances. The example tells us this can be done when
the initial data on the difference equation is zero and the system is

stable.
Let us confirm that y, defined by (2 2.3) satisfies equation (2.2.2).

The Markov parameters Ty, Ty,... of T(z™!) satisfy
(Ao + Ao+ +A4 a")(To+T10+ -+-Y=Bg+Byo+** + B,d"

We deduce (on equating powers of a)

z ATj- =B, j=01....n

min{jn} .
i A(Tj—i = 0, j > n. (2.2.6)
i=0 ' .

Define for N>nand k=0,1,...

k+N
yN)= z Tiey- ;-
=0
We have, by definition of Vi

V(N)— y, in dth mean as N — oo. (2.2.7)
Now : .

n —i+N
A(Z—l)}’k(N = Z Zo ATie, ;.

J
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The double summation on the right-hand side can be rearranged

and written
k+N .min{j.n)
Z( 2 Aﬂ}—i)ek-i-
j=o\ i=o

In view of (2.2.6), this is precisely Y j-oBje,—;, since N >n, k=0. It
follows that

YN) = A5 '[— Ay 1(N) = *++ — Apy—o(N)
+BOek+ T +Bnek—n]~

Bearing in mind (2.2.7) and taking the limit N — co, we deduce that
Vi k=0, 1,... satisfies the difference equations (2.2.2) as claimed.

2.3 ARMA noise modeis

A widely employed and versatile noise model takes a noise process
{n,} as the output of a linear system, defined by difference equations
driven by white noise. According to this model {n,} is given by

Az Y, =Bz Ve, keZ (2.3.1)

in which

A()= Ao+ Ao + -+ + Ay 0"
and
B(U)=Bo +BIO'+ te +dead2.

The matrices Ay,...,A,, are r x r and the matrices B,,...,B,, are
r x I. (It is convenient to emphasize here that A(c), B(c) might be of
different degrees.) It is assumed that the roots of o—det A(o) lie
outside the closed unit disc. We take {e,},cz to be a sequence of
zero-mean, uncorrelated second-order vector random variables with
common covariance matrix W.

One important special case occurs when 4,,...,4,, take value
zero. The equations can then be organized '

ne=Boe,+ Biey_+ -+ Bye—, 1 (23.2)

in which B, = A45'B,, B, = Ag!By,.... Models of the form (2.3.2)
are called moving average models (MA for short) since the noise
variable is expressed as a weighted average of present and past values
of the white noise. : ' )
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The situation when By,...,B,, take value zero is another

important special case. In this case the equations can be organized -

M+ Ay + o+ Agne_g, =8

where A, =Ag'4,, A,=A;'A,... and {¢,} is the process

{Ag *Boe,}. Models of this kind are called autoregressive (AR for
short) models since the equations for the current value of the process
{n,} involve a linear combination of (or. in classical statistical
parlance ‘regression on’) past values of the same process.

The model (2.3.1) in its full generality, which contains moving
average and autoregressive terms, is referred to as an autoregressive
moving average model (ARMA for short).

Notice that, by the theory of Section 2.1, {n,} is a well-defined
second-order process. We have

nk= Z T,-ek._i kGZ
i=0
where To, Ti,... are the coefficients in the formal expansion of
o — A~ (0)B(0) about 0: '
A" Yo)B(6)=Ty+ Tyo + -

.

and the infinite summation indicates a limit in mean square.

. (The formal expansion is possible since, by assumption, det A4,

(=det A(0)) # 0). Actually {n,} is a wide-sense stationary process
with spectral density function which is related in a simple way to
the transfer function A(c)~*B(c) as follows.

Proposition 2.3.1
The process {n,} defined by equations (2.3.1) has zero mean and is
wide-sense stationary. The process has covariance function

j‘ZoTj,,,WT} 120
R(h=1{"4

o0

ZOTJ-WTJT_, 1<0
~

and spectral density function
| D(w) = A" e )Ble™ )W [A™ (e~ ")Ble~ ") ]*

the star * indicates complex conjugate transpose).
p

—~ ~~ ~ N N ~ ~

SN

N N N

~

N T~ N oy N VY
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PROOF By definition

n= Alyl_{’:o si(N)

where s(N) =Y, Tie;~;. The limit is taken in mean square.

For each N, s,(N) obviously has zero mean. The random variable
n, therefore has zero mean since it is the mean square limit of a
sequence of zero-mean random variables. -

We now calculate the covariance function R(l).

R()=E {"kn};—t} :
= E{(lim s(N))(lim s, (N))"}

We- claim that we can bring the limiting operatxons outside the
expectation operator and write

‘ E{mmi_;} = 13’_{20 E{sy(N)s; -, (N)} (233)

To see this observe that, for arbitrary N, n, can be written

= 5,(N) + &,(N)
where

&= Z+ Tiex— ;-

The infinite summation indicates a limit in mean square. Now
E{nn;_,} can be written

E{mni_;} = E{[si(N) + &(N) 1 [si-:(N) + ﬁzﬁz(N)]}
=E{s(N)si=(N)} +4q(N) (2.3.4)
where
q(N) = Eey(N)sg-1(N) + Esy(N)ex - (N) + Ee(N)eg - (N).
By taking spectral norms across this last equation, and by appealing
to the Schwarz inequality (Proposition 1.1.2) and the properties of
the spectral norm (see Appendix D) we deduce -
19N I < (BN 1) (Else-N) 1)
+ (EllsdN) 1)) *(El e - (N) )72
+ (ElleN) %) (Ellei - (N %),

It now follows from the facts that, for fixed 'k, E||s,(N)}|* and
E|ls,-(N)|>, N=0,1,... are uniformly bounded and ¢, (N)—0,
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&(N)—0 as N — oo (see Proposition 2.1.2), that
q(N)—0 as N—co. (2.3.5)
Since (2.3.4) is true for arbitrary N, '
E{mf_} = lim [E{s(N)s{-(N)} + q(N)]
= Is'im E{Sk(N)SI_l(N)}

by (2.3.5). We have verified (2.3.3).
For each N,

E{sk(N)Sk 1(N)} Z

3
txy
~
o
:v
E-
[
:e
‘~!
——
>
=3

j=0p=l

min{N,N +1} T
= _,WTj—l

j= max{()}}

Z W WTT 120
N+l
_ZO’TJWTJT_, 1<0.
=

It follows from these expressions and (2.3.3) that

Z T, WTT =0
Z TWTT., 1<0.

We see that {u,} is a wide-sense stationary process and the
covariance function is as claimed.

Notice next that, by Proposition D.3.3 of Appendlx D, there exist
numbers ¢ > 0, 1€(0, 1) such that

IT,N<ch, j=01... (2.3.6)

From these estimates and properties of the spectral norm it is not
difficult to deduce that the covariance function R(-) satisfies

IR =

$° TWTT_,

j=max{0,!} -
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< S ITNWIT-

j=max{p,1}
<c A forl=0,+1,...

for some constant c,. So certainly ;2 _ , [|IR()|| < oo and therefore
{n,} had a spectral density function ®(w) which is given by

Ow)= 5 R(e™™, we[-m+rl.  (237)

{==c0

For the purposes of calculating ®(w) it is convenient to introduce
the convention T, = 0 for j < 0. Then R(/) can be expressed

S owTt,  1=0,+1,..

j=—o
Substitution into (2.3.7)' gives

(2

o= 5 3 TWTL e .

I=—~wj=~w

However, we easily deduce from (2.3.6) that

S Y ILwWTLl < oo.

=~ j=—0o
Under these circumstances we are justified in changing the order of
summation and writing

+

Ww)= 3 TW 3 Tie™

S,
+

=Y 1w Y rherii-me

j=—w m= o0 -

- me (£ )

=AY e ™)Be " )W[A~ (e~ *)B(e~'*)]*.
This completes the proof of Proposition 2.3.1. -

8

£

We have expressed the covariance function R(-) of the process
{m} as an infinite sum. Sometimes we require expressions for
values of the covariance function in closed form. These can be
obtained from the Yule—Walker equations:
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d
o S BWTL, I<d,
AR(G~-D= i=max{0,f}
&, ARC=D=175 I>d,.

Here the T; are, as usual, the Markov parameters. To check these -

equations we post-multiply (2.3.1) by nf_, and take expectations:

dy da :
‘Z'o AiE{"k—zn;r-x} = izo B:E{ek-fnf-x}- (2.3.8)

The left-hand side is simply

dy
Y AR(—1i).
=0
To evaluate the right-hand side recall that
Z Tek"l’
=0
and so
WTL, i—-120
E{ey-imi-1} = { 1<’ (2.3.9)

Substitution of (2.3.9) into (2.3.8) yields the Yule—Walker equations.

These equations can be solved for R(0), R(+ 1), R(+ 2),..., under
suitable non-degeneracy conditions. Let us see, first of all, how we
can obtain R(0), R(£1),...,R(%d,).Consideration of the values
1=0,1,...,d, yields d, +1 linear r x r matrix equations for the
2d, +1 unknown r xr matrices R(—d,), R(—d;+1),...,R(d).
However,.

R(—iF=R@), alli

so the linear equations really involve just d, + 1 unknown r xr
matrices, say R(0),...,R(d,). If the Jacobian matrix in question is
non-singular the equations can be solved for R(0),...,R(d;) (and
hence R(—d,),...,R(d;)). We may now regard the Yule—Walker
equations as recursive relations which yield the remaining R(k) given
the starting values R(—d,),...,R(d,).

In practice it is often more convenient, instead of using the
Yule-Walker equations themselves, to use the idea behind their
derivation. That is to say we obtain relationships between the R(j)

- as a result of multiplying across the ARMA model equations by
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outputs or disturbances at different times and taking expectations.
We shall illustrate this shortly.

An alternative approach is to evaluate contour integrals. Here we
note that the R(j) are the coefficients in the Fourier expansion of
the function ®(w) on [— 7, 7 ]:

o) = 57 R(jevo.

i

Consequently the R(j) can be recovered from (I)(w) by use of the
‘inverse’ formulae:

1 [~ )
R(j)=— fjeo =
§)] 2Rf_n¢>(w)e dw, j=0,%1,

.Now

j O(w)e dw = f Ale™9)e'* dw

-7 -7

(where A(c) is taken to be [A(c)]~*B(e)W[A ™ Y(a~")B(c~*)I")

=f“ A(e—iw)(eiw)j—leiwdw

"lf AN de.
r

The last integral is a contour inteéral in the complex plane around
the unit circle, denoted T. It follows that

1 . o
R(j)=ﬁfr/\(é")éi“1dé, j=0+1,... (2310

The right-hand side will be recognized as the sum of the residues of
poles of ¢ — A(¢~1)& ™! which lie inside the open unit disc. (No

difficulties arise with poles on the contours because of our hypotheses

on A(z™!)). The problem of calculating the covariance function
then reduces to one in residue calculus. In the event that &—

A(&™1)¢&/~* has only simple poles (let us write them él, .,&,) inside.

the open unit disc, we have
R(j)= Z(res1due of the pole at z; )

=Z[§igg (= c.-)A(c-*)cf*l].
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Example 2.3.2

Consider a scalar autoregresswe process {y,} described by the
equations v .
Ve—ye-1=e,  keZ, (2.3.11)

Here {e,} is a sequence of zero mean, second order, uncorrelated
random variables, each of unit variance. We assume that |a| < 1.
The Markov parameters associated with the transfer function
(1—az™Y~! are 1,a,a%.... Consequently the Yule—Walker
equations take the form:

>0 -
R(-jl)—aR(l )= { " 1<0 | (2.3.12)

Setting [ = 0 and 1, as prescribed above, yields equations for starting

values R(0), R(— 1) (= R(+ 1))
R(0)—aR(—1)=1
R(—1)—aR(0)=0.
These simultaneous equations for R(— 1), R(0) have solution
RO)=(1—a®"', R(—1)=a(l—a?""
Knowing R(0) we can solve (2.3.12) I;ecursivcly for R(— 1), R(—2),...:
R)=d"(1—-a?"t for I=—1,-2,....
A more direct approach is to multiply across (2.3.11) by y,_; and
take expectations:
E{yuyi-1} = GE{yi- 1Vi-1} = E{eryi-1}. . (2.3.13)

Now y,_; and e, have mean zero and are uncorrelated for [> 1.
Consequently

R()—aR(l—1)=0, 21 (2.3.14)
Setting I =0 in (2.3.13) gives ‘
R(0) — aR(1) = E{e,y,}- (23.15)

In order to evaluate E{e.y,}, we multiply across (2.3. 11) by e, and
take expectations:

E{ekYk} - aE{ekyk; 1} = E{e;}.
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The second term on the left is zero and we deduce
- E{e} =1
From (2.3.15) then
| R(0)—aR(1) = 1. (2.3.16)
It follows from (2.3.14) and (2.3.16) that
Ry=d'(1-a*"? 1=0,1,2,...,

in agreement with our earlier calculation.

Finally we illustrate computation of the covariance function by
contour integration. According to Proposition 2.3.1, the process {ye}
has spectral density

O(w)=(1 —ae™ ) "Y1 —ae™)™ .

Formula (2.3.10) for the covariance function gives

: 1 ~-1y-1 —1gj-1
=— - 1— Im1dE,

RO)=5— L(l ag™)"H (1~ a)HE

The integrand can be expressed
¥
¢—a(l—al) _
Forj=0,1,... this function has just one first-order pole in the unit
disc; it is at &£ = a. The residue at { =a is
¢-a¢ &

¢—al—at) (I-a?)

lim

§—a
It follows that
R(j)=d(1-a*"1, j=0,1,...
whence '
R(j)=d'1—-a*)"t, j=0,%1,...
as before.
It is natural to cnquire into the nature of the assumptions implicit

in consideration of ARMA noise models. As we have seen, the ARMA
noise model (2.3.1), under the stated hypotheses, has spectral density
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function ®(w):

O(w)= A" (e~ "“)Ble ) W[A~ ! (¢"*)B(e'*)]T.

By multiplying numerators and denominators of entries of this matrix
by a sufficiently high power of e~** we can arrange that ® has the"

property that its entries are rational functions of e =, It is essentially
this property which characterizes a process whose spectral density
function coincides with that of some ARMA noise model. In other
words, consideration of an ARMA model amounts to assuming that
the spectral density function is rational in ¢ ~*“. To be more precise, we
have the following theorem.

. Theorem 2.3.3

Let ®(w) be a matrix spectral density function. The following is a

 necessary and sufficient condition that ®(w) be the matrix spectral

density function of some ARMA noise model':
O(w) = Ale™*) ae. we[— 7, + 7]
for some matrix A(o) of rational functions With real coefficients which
is such that
A(e)=AT(c"!) ae. oeC. (2.3.17)

Furthermore, any r x r matrix spectral density function which
satisfies this condition is the matrix spectral density function of some
ARMA noise model in which the noise vectors have dimension r and

'~ common covariance matrix I, (the r x r identity matrix).

Observe that, for any A(c) related to ®(w) by P(w)=A(e™ '),
(2.3.17) is automatically true for almost every ¢ on the unit circle by
properties of the spectral density function. Condition (2.3.17) requires
the relation to hold almost everywhere on the complex plane, not just
on the unit circle. ’

Necessity of the condition given in the proposition is a simple.
consequence of the representation of the spectral density function of
an ARMAX noise model provided by Proposition 2.3.1. To prove the
rest of the theorem we need to show that if ®(w) is an r x r matrix

A"Almost every’ (a.e. for short) means ‘for all except a finite number of values of the
variable in question’.

. M. E. C.C.
BIBLIOTECA

., Vany ~ N Van

~~

~~
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spectral density function expressible in terms of A as described in the
proposition, then A can be written

A(0)=[A"*(0)B(0)][A™ (¢~ Bl N]"

where A, B are polynomials with r x r matrix coefficients and such the
o —det A(o) has no zeros in the closed unit disc; these polynomials
will then serve to define an ARMA noise model (2.3.1) with spectral
density function ®(w) when we take cov{e,} =1,..

We limit ourselves now to consideration to the scalar case. The
matrix case, which is complicated, is treated by Hannan (1970), p. 128.

COMPLETION OF PROOF OF THEOREM 2.3.1 (SCALAR CASE) Let us
suppose that A(c) is not identically zero since otherwise ®(w) is
obviously associated with some ARMA noise model.

We show first of all that none of the poles of A(c) lie on the unit
circle. Suppose this were not the case. Then there is some Oe
[ — n, + n] such that e~ *is a pole of A(¢), of multiplicity v. By means of
partial fraction expansion we can express A(o):

r(o)
(e—iO _ o.)v
where r(0) is a polynomial such that r(e™*) #0 and s(o) is a rational

function of which e~ is not a pole. It is not difficult to see that, as
- 8, A(e™'®) deviates by an arbitrarily small amount from Y(w):

Ao) = + s(o)

l/I(CO) — l-v'r(e—m)evw(w . 9)—v + s(e—-iw). ‘

But because of the w — (w — 6) ™" singularity y(w) is not an integrable
function. It follows that neither is A(e”'). This contradicts our
assumption that A(e ™) is a spectral density function. So A(s) can
have no poles on the unit circle.

Next note that, in the scalar case which we consider here (2.3.17)
can be expressed

A@)A@e™Y)=1, aeceC. (2.3.18)

Suppose now that b (b # 0) is a zero of A(¢) of multiplicity u. It follows
from (2.3.18) and the fact that the coefficients of A(c) are real that b~ 1,
b* and (b*) ™! are also zeros of multiplicity u. The zero b occurs then as
a member of a certain configuration of 4, 2 or 1 distinct zeros, each of
multiplicity u, depending on how many distinct complex numbers are
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generated by the operations of inversion, complex conjugation and-
inversion of the complex conjugate. Let us state these conclusions
more prec1sely An arbitrary complex number ¢, if it isnot 0, 1 or — 1,
is of one of the following three types:

Type 1: Im{c} #0 and [c] # 1
Type 2: cis real and ¢#0, 1 or —1
Type 3: Im{c} #0 and [c| = 1.

If b is a zero of type 1 and with multlphcxty u then b oceurs in a
configuration of four distinct zeros, each of multiplicity # and of the
same type. This is true also for both type 2 and type 3 zeros, except
that in these two cases the configurations are of just two distinct zeros.

The poles of A(c) have analogous properties. Note however that, in

- view of earlier remarks, poles of type 3 (whlch lie on the unit circle)

cannot arise.
If then b is a zero of multiplicity x and of type 1, A(o) can be
factored: _
A(0) = D(o)h(o)h(a ™)
in which k(o) is the polynomial with real coeflicients
h(o) = (¢ — by(c — b*)*

and D(o) has neither poles nor zeros at b, b*, b~ 1 (b*)~1. Notice that
we can always arrange that the roots of the polynomial h(c) lie
outside the closed unit disc by modifying h(¢) and D(¢) in the factoriza-
tion if necessary. Indeed

Hoho™) = (b Koo ™)
where | |
)= (0 = b Vo = 6

If b lies inside the open unit disc then b~! and (b*) ™! lie outside the
closed unit disc, so the desired factorization can be achieved if we
replace h(a) by A(c) and multiply D(c) by (bb*)?~.

Such reasoning applied also to the poles of type 1 and to the poles
and zeros of type 2 leads to the conclusion that A(¢) can be factored

A(6) = koo — 1)%(o + 1) P(0)G()C(c~Y). = (2.3.19)

Here k is a (possibly complex) number and p,q and r are integers.
G(o), constructed from poles and zeros of types 1 and 2, is a rational
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polynomial which has real coefficients and which has all its poles and
zeros outside the closed unit disc. P(¢), which arises from zeros of type
3, is identically 1 or has roots on the unit circle and is of the form

P(o) = H (6 —2cos 8, + o™ 1)~ (2.3.20)

In this last expression the Ok s are distinct real numbers lying in the
set( 7,0)u (0, @) and the y,’s are positive integers. We claim that the
;s must be even. Otherwise we can arrange by reordermg that u, is
odd. Then A(s) can be factored

Mo) = (6 —2cos 8, + a1y F(o)

in which F(c)is a rational function which does not vanishato =e
Consider now

Ale™101+9) = 201(Gos (8, + 8) — cos 0, )1 F(e ™ *9)

as a function of & on some neighbourhood of 0. Since y, is assumed
odd, this function changes sign as § passes through 0. This contradicts
the non-negativity of the spectral density function; we conclude that
the u,’s must be even. /

Since the y,’s in (2.3.20) are even, we can factor P(0), if it is present in
(2.3.19), as

- {0k

P(0)=Q(c)Q(c™")

in which Q(c) = Q(¢~!). Writing G(o) for 0(0)G(o) we obtain the
representation

Ao) =ko?(o - 1)%o + 1)'G(0)G(c ™ 1) (2.3.21)

in which G(c) is a rational function with real coefficients which has no
zeros inside the open unit disc and no poles inside the closed unit disc.

Because A(c) cannot have poles on the unit circle we deduce from
(2 3.21) that g,r = 0. From (2.3.18)

o?Pratn.(_1)1=1 - ae. oeC.

This identity can be satisfied only if g is even and 2p +q +r=0. But
then r must also be even and

oo—1)o+1)=(c— 7% + 1)"*(e™ 1_1)y2(¢™! + 1)’/2(— 1)%2,
We have shown that ' _
Ao)= k"H(a)H(a‘l) ae. oceC . (23.22)
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where H(o) is the rational function with real coefficients

H(o) = (0 + 1) (¢ — 1)%* G(o) and k = k(— 1)¥2. The facts that both .

A(0) and H(o) have real coefficients and are not identifically zero lead
us to the conclusion that k is real.

Let us now note that k must be positive. Since A(e™) is a (scalar) -

spectral density function it assumes real, non-negative values. By
assumption it is not identically zero however and so A(e™*) > 0 for
some fe[ — n, + n]. Then

FIH(e™ )| = kH(e™")H(e") = Ale™) > 0.

This mequahty 1mphes k>0.

Since k is positive, we may remove it from (2.3.22) by absorbing k*/?
into H(c). There results a representation of A(g) of the form (2.3.18) in
which A(¢) has no zeros in the closed unit disc. The proof is complete
in the scalar case. : O

Scrutiny of the proof will reveal that we have actually established
(in the scalar case) rather more than is claimed in the theorem, namely:
a scalar spectral density function which satisfies the condition of the
theorem can be realized by an ARMA noise model (2.3.1) in which the
polynomial B(s) has no zeros in the open unit disc.

2.4 Stochastic dynamical models

We now describe a number of important stochastic dynamical

models. They all conform to the description of Fig. 2.3, namely the -

output supplied by the model can be interpreted as the output to a
deterministic system S driven by the input, to which has been added a
noise process {w; } expressible as the output of a second linear system
§ driven by white noise. It will turn out that all the models which we
describe in this section are essentially different forms of the same
model. There is & point none the less in separating them out, since
different forms of the model suggest different controller design and
identification procedures.

24.1 General stochastic dynamical models

According to this model the sequence of r-vector outputs {y,} and m-
vector inputs {u,} are related by

yi =Pz Yu, + Q(z™ Ve, (2.4.1)

—
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Here P(o), Q(c) are r x m, r x r matrices of rational functions in &
expressible as

P(o)=p ' (0)P(o), Qo) =q"*(0)0(o).

In these express1ons p(0), q(c) are polynomials in:o such that p(0) # 0,
g(0) # 0. P(6), O(0) are polynomials in ¢ with coefficients r x m, r x r
matrices respectively. The driving noise process, {e,}, is a collection of
zero mean, uncorrelated r-vector random variables. We make few
restrictions on the nature of {e,} at this stage, but will impose
additional conditions on {e,} in the future as the need arises (e.g. the
e,’s have common covariance matrix, are independent, etc.).

In accordance with our earlier remarks {y,} is expressible as the
sum of the output { y ¥} from a deterministic linear system given by the
input: ,

yE =Pz

and a noise process which is the output {w,} of a linear system driven
by white noise {e,}:

w,= 0z Ye,.

Notice that we have taken the ¢,’s to be of the same dimension as
the outputs. This is not unreasonable since if the noise at the output,
{w,}, is a wide sense stationary ARMA process then we can assume
without loss of generality, so far as second order statistics of {w,} are
concerned, that the driving noise has the same d1mens1on as {w,} (see
Theorem 2.3. 3)

- 242 ARMAX models A '
" ARMAX models are obtained by appending a moving average of the

input to the ARMA noise model of Section 2.3. The ‘X’ in the label
ARMAX attached to these models refers to the terminology ‘exog-
eneous variable’ used in the econometrics literature to mean ‘external
inputs to the system’. The r-vector outputs y, and m-vector inputs Uy
are related then by

Az )y, =B(z™ N + C(z~ ‘)ek ) (24.2)

In this equation, A(c), B(c), C(a) are polynomials in o with coefficients
rxr, rxm, rxr matrices, and A(c) satisfies det 4(0)+#0. {e,} is a
collection of zero-mean, uncorrelated r-vector random variables. *
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2.4.3 Stochastic state-space models

Stochastic state-space models result from adding noise processes to
the state and observation equations of the linear system model
studied in Section 1.2. Thus the r-vector outputs {y,} are related to
the n-vector states {x,} by the equations

xk+1 = Axk + Buk + Cek

Ve = ka + Gek‘ . (2'4'3)

Here A, B, C, H, G are nxn, nxm, nx I, rxn, r x| matrices
respectively. {e,} is a sequence of zero-mean uncorrelated [-vector
random variables, and the initial state x, is uncorrelated with {e,}.
Note that by superposition x,, y, can be written as

Xy =X, + Xx¥,

V=P + Vi
where
xX¥ei=Ax¥+ Bu;,, x¥=Ex,
Vi =Hx* (24.4
and

fk+1=Afk+Cek,/ io-’-‘-’Xo_ExO
j;k = H.fk + Gek. ’ (2.4.5)

Referring back to Fig. 2.3 at the beginning of this chapter we see that
(2.44) and (2.4.5) represent the ‘system’ and ‘noise’ models S and S
respectively, both in state space form.

Some covariance calculations for state space models
Consider the stochastic state space model when the input is zero:

Xpw1 = Ax, + Cey

yk = ka -+ Gek' (2.4'6)

We assume that the e,’s are uncorrelated, have zero mean and cov{e,}
= [ for all k. In future chapters we require detailed information about
the covariance matrices of the state and output processes. We collect
together the necessary results in the following proposition.
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Proposition 2.4.1

Suppose in (2.4.6) that the time set is Z*, and the initial state x, has
mean m, and covariance Po. Then P(k):= cov{x,} satisfies

P(k + 1) = AP(K)A™ + CC™, P(0) = P, (24.7)
and '
HP(k)HT + GG, j=0
ViV Yim i} =\ 4 4p(k — HT + HAIICGT, j=1,2,...,k.
: (2.4.8)

If A is stable then P(k)— P as k — co where P is the uniqué solution of
the Lyapunov equation
P=APAT+CC".
Furthermore if Po=P then P(k)=P for all k>0. The mean
m(k):= E{x,} satisfies
m(k + 1) = Am(k)
0) = mq. (2.4.9)

Now suppose that the time set is Z and that A is stable. In this case
{x.} and {y,} are widesense stationary processes,

E{x;}=0, cov{x,}=P
and .
_ HPHT + GG”, : j=0
COV{¥i Viu1} =\ g 4IPHT + HAI1CGT,  j>0.°
Here P is once again the solution to the Lyapunov gquation.
PROOF Suppose the time set is Z*. The equations (2.4.9) follow
from taking expectations across the state equation. Defining

%y = %, — mik), = y, — E{y,} we deduce from (2.4.9) and (2.4.6) that
{x.}, {7} satisfy (2.4.5). By (24.5) ~

xk=ijk—j+ Aj_ICe,,._j+ A Cek_1

for 1 < j < k. Since X, ..;is uncorrelated with e, _ j, ..., €, we deduce
from this equation that

E{%,71_} = ATP(k—))

U
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and |
E{Xef_;}=4"'C.
1t follows that, for 1 <j< k,-
cov{yi, Yk j} = E{ici- j} = E{(H% + Ge)(H%, - ; + Ge; )"}
=HAP(k—j)HT + HA'"'CG".

. By (2.4.5) and since X, and e, are uncorrelated, { P(k) } satisfies (2.4.7)
and B ‘

cov{y,} = HP(k)HT + GG".

we have proved (2.4.7) and (2.4.8).
Now suppose that A is a stable matrix, let .# denote the set of n x n
matrices and define for any De.#

P(D):= Y A*D(ATY-. (2.4.10)
k=0
B(D) is well-defined since for any xeR"
IxTA*D(ATYex| < c2¥jx ]2

for some ¢>0, Ae€(0,1) under the stability condition (see

- Appendix D). It is easy to see that P(D) satisfies

P(D)= AB(D)A™ + D.

. Let L be the map from .# to .# defined by

L(P)=P — APA".

L can be thought of as a map from R to R" since each matrix can be
identified with the point in R** whose coordinates are its n? entries. L
is linear and its range is all of R" since for any matrix D there is a P
such that L(P) = D, namely P = B(D). But it is a standard result in
linear algebra that if the range of L is full then its null space (i.e. the set
of P such that L(P)=0) consists of only the zero element. Taking
D = CCTthisshowsthat the Lyapunovequation P = APAT + CC" has
unique solution P = B(CC") and P is non-negative in view of (2.4.10).
The nth partial sum of the right hand side of (2.4.10) coincides with
P(k) given by (2.4.7) with Py, = 0. If P, 5 0 then there is an additional
term A" 1 Py(AT)"* ! and this converges to 0 as n— 0. Thus P(k)— P
as k— oo regardless of the initial condition P,.

Finally consider the case when the time set is Z. Since A is stable, -
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{x,} and {y,} can be expressed as outputs of ARMA models (sce
below). By Proposition 2.3.1 then {x,} and {y,} are widesense
stationary processes. It follows from the state equation in (2.4.6) that
cov{x,} satisfies the Lyapunov equation and therefore, by unique-
ness, cov{x,} = P. We show much as before that, for j> I,

E{xkxz_.,} = A'lP.

We now deduce the formulae for the covariance function of {y,} from
the output equation in (2.4.6).

2.4.4 Initial conditions

For each of the preceding models we can take the underlying time set
to be either Z or Z*.

Consider first the situation in which the time set is Z (whlch can be
viewed as the case when initial data comes in the form of the infinite
past of {,} and {e.}). The output {y,} of the. general stochastic
dynamical model (2.4.1) is defined by

w=T(z" l)ék
where :
U

T=[PQ]l, ék=[e ] P=p~iP, 0=q7'0,

k

according to the theory of Section 2.1. This is possible under the
additional hypotheses that {e,}, {,} have uniformly bounded
moments of an appropriate order and that the zeros of p(¢) and g(o)
lie outside the. closed unit disc. The output {yk} of the ARMAX
model (2.4.2):

Az Ny =Bz Yuy + C(z'l)ek
is taken in this setting to be the output of the. general stochastic
dynamical model
Ne=A"Yz" I)B(Z— My + A I(Z— I)C(z e,

in the sense just described. The output is well defined if a—»detA(a)
‘has all zeros outside the unit disc and if the moments of {e,}, {1} are
suitably bounded. As for the space model (2.4.3):
xk+1 = Ax,‘ + Buk + Cek
Vi =Hx; + Ge,, -
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when the time set is Z, the output y, is taken to be thaf of the general
stochastic dynamical model (2.4.1):

; Ye=Pz" Y, + Q(z" Ve,
with
Ple)=0H[I—0A]"'B, Q(6)=6H[I—0cA]"'C+G.

It is not difficult to show that the hypotheses under which (2.4.1)
defines {y,} are satisfied if A has all its eigenvalues in the open unit
disc, and the moments of {u,}, {e,} are suitably bounded.

The other case to be considered is that when the time set is Z *. Here
the ARMAX model equation (2.4.2) can be solved recursively to yield
Y k=0,1,... (as a function of the inputs u,,u,,... and noise
€0,€y,..., provided initial data y_,,...,y_., U_(,..U_p,
e.y,...,e_,issupplied). There is no difficulty either with defining the
output to the state-space model (2.4.3) when the time set is Z*, The

* state-space equations can be solved recursively given x, as initial

data. It remains to consider general stochastic dynamical model
(2.4.1). By extracting the least common multiple g(¢) of the. poly-
nomials comprising the denominators of entries of P(¢) and Q(a), we
can always express the general stochastic dynamical model equations
as; ‘

Ve=g Yz WPz Y, + g™z~ )0z Ve,

for some polynomials P(c), Q(c) in ¢ with matrix coefficients. Fof the
purposes of computing the output to (2.4.1) when the time setis Z*,
the model is treated as the ARMAX model (2.4.2) with

Alo) = g(o)l, B(s) = P(a), C(0) = Q(o).
Initial data in the formof y_,,...,y_,u_y,...,u_sand e_,,...,e_;
is required, where i =max degree {g(c), P(0), O(c)}.
The arguments of Section 2.1 applied to the equations

Az Yy, = [Bz™Y) C(z“)][ ] ‘

establish that our two notlons of solutions to the ARMAX model
equations for the output y, are compatible to the extent that, if y, is a
solution on Z then y,, y,,..., is a solution to the recursive equations
specified by ' '

A(Z_I)J’k=3(z_l)uk+ C(z™ Ve, kez*,
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" when initial data on the y, variable is suitably chosen. It is not difficult
to show that the two notions of solutions are compatible (in an
analogous sense) for general stochastic dynamical models and state-
space models also.

2.4.5 Interchangeability of models

We limit attention to models for which the time set is Z. As a by-
product of our discussion in the preceding subsection, we see that
ARMAX models (2.4.2) and stochastic state-space models (2.4.3) can
always be reformulated as general stochastic dynamical models (2.4.1)
(under appropriate stability’ and boundedness assumptions, of
course). It is clear, too, that a general stochastic dynamical model can
always be rewritten as an ARMAX model:

9z V=P Y+ Oz Ve

where the polynomial g(o) is the least common multiple of the
denominators of P(¢) and Q(o), B(c), O(0) are suitable polynomials
with matrix coefficients.

In fact it is true that we can pass freely between all the models
considered (subject to mild qualifications). To confirm this, it remains
to show that an ARMAX model can be reformulated as a stochastic
state-space model. This final step is supplied by the next proposition.

Proposition 2.4.2

Suppose that the processes {y.}, {u;} and {e,} are related by the
ARMAX model equations
. Yk + Al)’k—l +oe 4+ Anyk—n = Bluk—l + B o Bnuk—n + Coek

_ +Ciepey+ o +Cheymny  keZ,
where A,,...,A, are r x r matrices, By,..., B, are r xm matrices,

Co»..., C, are r x r matrices. Then there exists some ‘state’ process
{x,} such that the state-space equations

TR e
Xper=| 1 Dot | |t ";" €s
I _Al B, C,—4,C

Y= [0i...i]x, + e, keZ,
are satisfied by {u, ;. e,}.
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dere I is the r x r identity matrix.

PROOF The ARMAX model equations can be organized as a
‘nested’” sum: :

yf(=(— Alyk—l + Bluk_l + C1ek_1
+ (= Azyk-2+ Bty + Crey_,
+(i(=AYion+ Bitty—n+ Corr).. . )+ Cotr.  (24.11)

Let us now introduce auxiliary variables defined by the recursive
relations:

xp=—ApVi-1+ Batty—1 + Cpey—

x2= = Ay V-1 + Bu—th—y + Comy€hmy + Xy
. 24.12)
Xt = —Ayyp-y + Bytgy_y + Cae—y + X33
and
xi =y, — Coey. ' (2.4.13)

Elimination of x},...,x!~2 from (2.4.12) gives
XpZi=(=AzVk-2+ Bathe— + C64~
+ (' . ( - Anyk—n + Bnuk—n + Cnek—n)' ")' (24'14)

Comparing this equation with (2.4.11) we see that

Vo= — A1+ Bty + Crep - + %21 + Coey. (2.4.15)
Substitution of (2.4.13) into (2.4.12) gives

Xp = — ApXi— 1 + Byth—y + (C, — 4,Co)ex—;

xlf = (— An—lxz—l + xli— 1) + Bn— 1Uk-1 + (Cn— 1= An— 1 CO)ek"l

xpt=(—=Axi_ +x423) + By +(C2 — A2Co)e -,
Finally, from (2.4.13) and (2.4.15) we have
Xh=—Axi o +xp21 + B +(Cr— 4,Coley -y

The last n equations, together with (2.4.13), can be organized as the
state-space equations of the proposition. O

The principal restriction on an ARMAX model
Az™ Yy = Bz Dy + Clz™ ey

I'e

NN
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Y%

Fig. 24

in order that it can be reformulated as a stochastic state space model is
that B(0) = 0. In other words, there must be a pure delay between
application of a control and its effect on the output. In addition, we
require that A(0) = I. Since of course it is assumed that det A(0) # 0,
this last requirement can always be achieved by transformations.
Readers may find it helpful to note that the choice of state
components (for the state-space representation of an ARMAX model)

~ which we have adopted in the proof of Proposition 2.4.2 is sum-

marized by the ‘analogue circuit’ diagram for the ARMAX model
shown in Fig. 2.4, in which small circles represent multiplication by
the given constant factor, the symbol Z denotes summation, and the
triangle a unit delay.

2.5 Innovations representations

Suppose an output process {y,} is generated by ARMAX model
equations (2.4.2): _

Vet Ay 4+ A= Bouk + Byt + " + By,

+e+Cie g+ +Coey.
Here eg,ey,... is a sequence of zero-mean, independent random
variables. The inputs uy, #,, ... are taken to be deterministic. Values of
VetseresYomlaqsees Uy €y, €., are supplied as initial data.
In these circumstances it can be shown that the conditional expect-
ation of y, given yo,..., -1, Written P, _,, is
Pieer = — A=t =+ — AVi—n + Bothy + =+ + By,
+Clek—-l + v +C”ek_". »

It follows that

&= Vi~ Vg1 ] @5.1)
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This is the ‘innovations process’, a sequence of zero-mean, independ-
ent random variables which plays a central role in the theory. of
filtering and stochastic control, as we shall see in future chapters.

Because we are permitted to interpret the noise in the system
equations (2.5.1) as the innovations process associated with {y,}, the
representation of {y,} provided by (2.4.2) is called the innovations
representation of {y,}. The terminology ‘innovations representation’
is often loosely attached to ARMAX model equations even in the
absence of assumpuons on initial conditions and inputs and on
independence of the ¢;’s which make the interpretation of {ek} as an
innovations process valid. The closely related general stochastic
dynamical model equations (2.4.1) are also so named.

Consider next a stochastic state-space model description (2 4.3) of
the process {y;},

xk+l = Axk + Buk -+ Cek
Ve = Hx, + Ge,.
This system is said to be in innovations form if

G is a square non-singular matrix (25.2)

The most obvious consequence of this property is that if the initial
state x, is given, then the state x, can be reconstructed exactly from
observed inputs and outputs, sinpe '

Xes,=Axg+Bu +CG~ Yy, — Hx)  k=0,1,...

Thus, regarded as a ‘black box’, the only ‘uncertainty’ in an
innovations-form model is the value of the initial state. The noise
process e, is closely related to the so-called ‘innovations process’ of
Kalman filtering theory, discussed in Chapter 3, and this is the reason
for saying that the model is ‘in innovations form” if (2.5.2) is satisfied.
~ An important consequence of the filtering theory of Chapter 3 is
that, given a stochastic state-space model description of a process
{}, there is essentially no loss of generality in assuming that it
provides an innovations representation for {y,}. This observation
coupled with the assertion of Proposition 2.4.2 (note that, given an
ARMAX' description, Proposition 2.4.2 provides us with a state-
space description having output equation y, = Hx, + Ge, with G = I)
leads to the conclusion that ARMAX models and stochastic state-
space models are interchangeable -even if we stipulate that the
stochastic state-space model prov1des an innovations representation
of the output.
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Let us be more precise. Suppose an output process { Yi} is generate
by the equations of a stochastic state-space model :

ik"‘l = Aik + Buk + Cék
Vi = H%, +Gé,

in which A is a stable matrix. Here ug, uy,... are assumed to be
deterministic, xq and &, &,,... are zero-mean independent random
variables, and &,&,,... have the same covariance matrix. (No
,assumptions are made here concerning non-singularity of G.) Then,
for the covariance matrix cov{x,} of x, appropriately chosen, {y} is
generated also by stochastic state-space model equations

xk+ 1 = Axk + Buk + Cek
w=Hx,+e, k20 (2.5.3)

in which {e,} is the innovations process associated with {n:}, ie. by
equations which provide an innovations representation. Even if the
matrix cov {x,} is arbitrary, (2.5.3) will still describe y; to a very good
approximation, for large k. ,

These considerations lie behind the fact that, when stochastic state-
space models are adopted in the field of identification (where we are
interested in external models), attention is usually limited to those
which provide an innovations representation (2.5.3). An economy in
the number of parameters specifying the models can usually thereby
be achieved and no loss of generality is involved. On the other hand,
stochastic state-space models (general form) (2.4.3) are important too,
since they arisé from internal modelling of systems for which there are
certain natural choices of state components and interconnections.

2.6 Predictor models

We describe now a rather general class of models, models whose main
value will prove to be their suitability for the formulation of
identification procedures and analysis of their convergence pro-
perties. The models are called predictor models'. This class of models
subsumes in essential respects the stochastic dynamical models of
Section 2.4. We must assume however that the driving noise is a
sequence of independent random variables. Rather than present and
analyse identification algorithms associated with, say, ARMAX

*The name ‘prediction error model’ is often used in the literature.
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models or state-space models individually, we shall for the most part
work with predictor models and specialize down to individual cases
for detailed description of results. We will thereby emphasize
common themes and avoid needless duplication of effort.

The r-vector output {y,} of a prediction error model at time k is

related to past outputs and past m-vector inputs u,_,u_s,...
according to

Vo= Sl L) e, k=0,1,... 2.6.1)

In these equations y*~* and u*~! denote col [y -y, Vk—2,--+» Yol and

- ol [ty — 1, Ug—2s---,Uo] TESpECtively; f:R¥ x R¥ —RP, k=0,1,...,

are given deterministic functions of past inputs and outputs; {e,} .z + is
a sequence of independent, zero-mean r-vector random variables.

~ Itisclear that f,(y*~*,u*~") is the expected value of y, given Y1,
#*~1, and is therefore the best ‘one-step-ahead predictor’ in the mean-
square sense (see Proposition 1.1.5). Thus a predictor is built
explicitly into equations (2.6.1). This accounts for our calling the
models ‘predictor models’. v

Let us now suppose that the noise vectors ¢, entering into the
stochastic models of Section 2.4 are independent. Under these
conditions we substantiate our claim that the class of predictor
models essentially subsumes these models. This amounts to solving,
in each case, the one-step-ahead prediction problem.

Consider the general stochastic dynamical model of Section 2.4 (we
limit attention to systems in which there is a unit delay in the
implementation of the input and for which the initial inputs and
outputs are taken to be zero): '

=Pz V-, +0z" e, k=0 (2.6.2)
with initial conditions '
uk=0,yk=0,ek=0,' k<0.
We suppose that, in (2.6.2), the polynomial Q(o) has coefficients r x r
matrices and Q(0) = I. This can always be arranged by providing, if
necessary, fictitious additional noise components of zero mean and
variance, and by application of linear transformations to the

disturbances.
" Rearrangement of the system equations gives

Ve=[—0 'z NIy +Q ' z" )Pz Vuty—y + e k>0,
uk=0,yk=0, k<0.

.

I~
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Notice that [I —Q~!(0)] =0 since Q(0)= I, and we can therefore
express {y,} as the solution to the predictor model equations

- k=1 yk=1) 4 o
in which J.)k Iy Jte

SO L) = =07 @ I+ Q71 e P Dty -
The right hand side of this equation defines a function of y*~! and

u*~ ! in view of the initial conditions.
Consider next an ARMAX model (Section 2. 4)

A= Bl ey +CE e, k20
when we take as initial conditions
Ye=0,u,=0,e,=0,k<0.
If it is assumed that the e, are independent and have zero mean,
A(0) =TI and C(0) = I then the model can be expressed as a predictor

model (2.6.1) in which f(y*~!,u*~*)is the function §, calculated from
the recursive equations

Clz™i=[Clz™ ")~ Alz" )]y + Blz" Y-y - i=0,1,...
with initial condition '
$;=0,y,=0,u;,=0, for i<O.

Consider ﬁnally a stochastlc state- space model prov1ded with an
innovations representation (Section 2.5)
xk+1 = Axk + Buk + Kek
yk=ka+Gek’ kZO
with initial condition x, = 0. Here G is a non-singular square matrix.
This model, too, can be expressed as a predictor model (2.6.1) pro-
vided the ¢, are independent and have zero mean. Now we take

the function fi(y*~1,u*"!) to be 9, where 9, is obtamed by solving
the equations -

Xis1=Ax;+Bu;+ KG™!(y,— Hx)  i>0

with initial condition x, =0, and by setting

yk ka

NOTES AND REFERENCES 99
Notes

Sections 2.1-2.3. Processes defined through stochastic difference equ-
ations are studied in a number of books; for example, Astrém (1970),
Hannan (1970) and Whittle (1963). Detailed information about
various specific ARMA models can be found in Box and Jenkins
(1976). In our treatment we have emphasized stability aspects in
preparation for the convergence analysis of identification algorithms,
which is given in Chapter 5. The spectral factorization theorem,
Theorem 2.3.2, is proved here only in the scalar case. A proof of the
theorem when the process considered is vector valued can be found in
Hannan’s book (1970, p. 129).

Sections 2.4-2.5 We follow Ljung (1974) in interpreting standard
stochastic dynamxcal models as special cases of predictor models. For
material on the detailed structure of stochastic dynamical models
suitable for identification we refer to some of the literature on
‘canonical forms” Denham (1974), Dickinson (1974), Glover and
Willems (1974) and Mayne (1972).
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CHAPTER 3

| Filtering theory

The stochastic state space model introduced in Section 2.4 is an
internal model: its states x, are not observed directly but do
contribute to the observed outputs y, as specified by the observation
equation in (2.4.3). It is natural then to consider the problem of
forming ‘best estimates’ of the state x, give the available data
(Yo» Y1s---» i) This procedure is known as filtering. There are at least
three situations in which filtering is required. Firstly, it may be an end
in itself: this is the case when, as often happens, the state variables x
represent important physical quantities in a system which we need to
know as accurately as possible even though they cannot be measured
directly. Secondly, if we wish to control systems described by state
space models then the natural class of controls to consider is that of
state feedback controls where the control variable u, takes the form
u, = u(k, x;). I x; is not ‘known’ then in some circumstances it can be
replaced by a best estimate %, produced by filtering; this topic is
described at length in Chapter 6. Finally, filtering is relevant when we
wish to replace the state space model by an ‘equivalent’ external
model; see section 3.4 below.

Initially we will consider the filtering or estimation problem in a
more general setting than that described above, specializing to state
space models later. The general problem may be described as follows:
one observes the values of random variables Y,..., Y, and wishes to
‘estimate’ the value of another random variable Y,. Here Y':=
(Yo, Yi,...,Y,) is a vector random variable with a given joint.
distribution function F. An estimator is any function g(Y) of the
observed vector YT:=(Y,,..., Y,) and this is to be chosen so as to
minimize the mean square error

- &=E[Y,—g(Y)]? - (3.0.0)

We have already seen in Section 1.1 that the function g which
minimizes the mean square error is the conditional expectation
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[+ o]

T E[Y,|Y]= J + YodF yy(yol V).

-

However, this may be hard to compute and in any case we may only
know certain parameters of the joint distribution of ¥ rather than the .

function F itself. For these reasons and others which will emerge later,
we are led to study the linear estimation problem where the choice of
estimators g is limited to linear functions, i.e. those of the form

g =, Y+, Y, + o+ o, Y, (3.0.2)

This is much simpler since we are now just searching for the n-vector
ol =(ay,...,,) which mininizes (3.0.1) with g given by (3.0.2). Notice
that in this case

 E[Yy—g(Y)]*=E Y oYY,
i,j=0

n
= Lo EYY,

where for notational convenience we have defined aq = — 1. Suppose
that all the random variables have zero mean. Then EY,Y; is just the
(i,/)th entry of the covariance matrix cov(Y), and this shows that in
order to solve the linear estimation problem we only need to know the
means (= 0) and covariances of the random variables. This is much
more reasonable than requiring that the whole joint distribution

function be known. (Of course, the theory only applies when all the

random variables have finite variance, but this is hardly a restriction
in practice.)

The solution of the linear estimation problem in principle is quite
straightforward and in fact a formula for « is given in Theorem 3.1.1
below. The key idea is that the best linear estimate can be thought of
geometrically as thé ‘orthogonal projection’ of Y, onto the observ-
ations Y. Section 3.1 is devoted to explaining this idea and its relation
to the conditional expectation mentioned above. What remains is to
develop effective ways of calculating this projection. The main
application we have in mind is estimating the state vector of the state-
space model of Section 2.4 from the output. This problem has a
dynamic structure in that the output values y,, y; ,... are measured at
successive instants of time and we wish to ‘keep track of ’ the state
vector x; as it evolves. Thus a recursive algorithm is required which
will take the estimate at time k and, using the new observation y . {,

o~ o~ N N~
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update it to give the estimate at time k + 1. Such recursive estimators,
or filters, are discussed in general terms in Section 3.2. We then derive
in Section 3.3 the Kalman filter equations which provide a recursive
estimator for the state-space model. Kalman filtering theory is
applied in Section 3.4 to derive the innovations representation of the
state-space model mentioned at the end of Chapter 2.

3.1 The geometry of linear estimation

To introduce the geometric picture of linear estimation let us consider
the problem introduced above with n= 1. Thus (Y,, Y;) are jointly
distributed zero-mean random variables, and we wish to find the
number « which minimizes

& =E[Yy—aY,? = E(Y2) = 2aE(Y,Y,) + «2E(Y?).

Elementary calculus shows that the right choice is

_E(YeYy) “
= 5D 3.1.1)
(provided that E(Y?)# 0) resulting in a minimum error of
, ) ..
E=EY})———s 2,
(Y9 = gy B Yo

Let 0y, 04, p be the standard deviations and correlation coefficient of
Yo, Y, (see Section 1.1.1). Then the best estimator is

Py =aY,=p20Y, ' (3.12)
, o,
and the error is
- Y, Y :
Yo=Y,—aY, =0l >—p—- 3.1.3
0 o —0arIy 00((}_0 /,)‘71) ( )
with variance .
€ = aj(1 - p?).

Now note the crucial fact that the error Y is uncorrelated with the
observed random variable Y,, i.e. '

E(¥,Y,)=0.

This is easily seen from (3.1.3). It is also easily seenthat the value of o
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given by (3.1.1) is the only one such that (Y, —aY,) and Y, are
uncorrelated. )

The geometric picture that goes along with this is as follows:
Suppose v, v, are vectors in the plane which have lengths ¢4, o,
respectively and intersect at an angle 6 such that cos@=p (see
Fig. 3.1). The vector v, can be expressed as the vector sum of its
projection ¥, on to v, and the difference ¥,=v,~— ¥, which is
orthogonal to v,. The projection ¥, is given by

A 1 o
Vo=0g cosO(;:ﬁ) = ,o:r—(:v1 (3.1.4)

Comparing (3.1.2) and (3.1.4) we see that if the random variables Y,
Y, are identified with the vectors v,, v, respectively then the best
linear estimate ¥, corresponds to the projection ¥, of v, onto v,. The
inner (or dot) product of the vectors v, and v, is

Vo'Vy =090, COSG=0'00'IP = EYOYI = COV(Yo, Yl)‘

Thus the vectors representing the random variables have lengths
equal to the standard deviations of the random variables and inner
product equal to the covariance. Notice in particular that if ¢ =0 or
6 = mthen the vectors are colinear and ¥ = 4 v, = % (6,/0,)v,. Since
p = cos6 the equivalent condition on p is that p = + 1. But we already
saw in Chapter 1 that if Yy, Y; have correlation coefficient + 1 then
they are linearly related: Y, = 4 (04/0,)Y;. Thus ‘linear estimation’
can be done with zero error, as the geometric picture indicates.

In order to formalize the above discussion and generalize it to
higher dimensions we need to review the geometrical properties of R?
considered as a vector space. Elements or vectors x of R? are n-tuples
of real numbers x = (x,, X,,...,X,). Addition and scalar multiplic-
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ation are defined componentwise: x +y = (x; + y;,..., X, + y,) and
ax = (axy,...,ax,) foraeR. The inner or dot product of two vectors x,
yis deﬁned by

d
Xy= Z XiVie
i=1

The vectors x and y are orthogonal (x Ly) if x-y = 0. The norm of a

vector is
| 1) = /(x-x)
Fori=1, 2,...,d define
2:=(0,...,0, 1, 0,...,0) (I in the ith position)
These are the coordinate vectors. They have the following properties:

(@) They are normalized and mutually orthogonal:
{1 i=j
S {0 i)

(b) They form a basis for R% any xeR“ can be expressed as x =
3 , a:z; for some coefficients a;.

Itis clear from the definitions that the coefficients a; in (b) are given by '

a; =X-z;, 5o that each xeR? has the representation:

d
X= Z (x°2))z;.

Any set of vectors z, satisfying (a) and (b) is called an orthonormal
basis of R%. A subspace & of R is a subset with the property that if
X, yeZ then ax + fye % for any «, feR. The subspace generated
or spanned by any collection of vectors uy,...,u,, is denoted by
ZL(uy,..., u,,,) and is the smallest subspace contaxmng the generating
vectors. It is easy to see that

ZLuy,... m)—{ Z au;:a = (a,,.. ,,,)eR"‘}.

It is always possible to construct an orthonormal basis x;,..., x, of R
such that L(u,,...,w,) = L(xy,...,x,) for some k <min{d, m}. This

>
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can be done by using the Gram—Schmidt orthogonalization procedure,

which we describe next. Supppose, to avoid triviality, that -

llu;| >0 for some i (otherwise L(uy,...,u,)={0}); we can then
assume, permuting indices if necessary, that | u, || > 0. Define

T
Now suppose that orthogonal vectors X, ..., X, have been found
for some number k()<min{d,m} such that L(u,,...,u)=
Z(X15. .., Xyq). Define
- ' k()
Vi=lW,e — Z (U4 X)X

Thenv Lx;fori=1,... k(). If || v]| =0, set k(I + 1):= k(l); otherwise,
set k(I + 1): —k(l)+1 and Xea+1)=V/[[v]. Then Xxy,...,x,444, are
orthonormal and Z(u,,...,u,,,)= Z(x,,. o Xg+ 1) Since clearly
Luy)=2L(x,) we conclude by mductlon that L(u,,...,u,)=
L (X1, > Xgm)- By construction k:=k (m) <m, and k < d smce dis
the maximum number of linearly independent vectors in RY. If k < d
then orthonormal vectors X, 4,..., X, can be constructed in a similar
way so that x,,...,x, form a basis of R%. We leave it to the reader to
supply the details.

The orthogonal projection ¢ of veR? onto a subspace %:=
Z(uy,...,u,,) is defined by

k

V= Z (v-x;)x;

where x;,...,X, is an orthonormal basis such that % = #(x,,. cor Xg)-
¥ can be characterlzed in the following two equivalent ways.

(a) ¥ is the unique vector satisfying
Vel
v—V.1lu

(b) ¢ is the closest point in % to v, ie.

[v—¥}=min|v—ul.
ue s :

In (a), v — ¥ L% means that (v—¥) Lu for all ue %.
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Both (a) and (b) are very easily established uéing the basis x,,...,X,,
but note that the statements themselves do not mvolve any partlcular
choice of basis. For part (b) we have :

Vou= (0, — U)Xy o (O — U)X F Dy X g + 0+ DXy

where v; = v-x;, ; =u-x;. Thus

k d
lv—ul?= ) @—u)*+ Y o}
i=1 i=k+1
and this is clearly minimized by taking u; =v,, i <k.

Let us denote ¥ = Pv. Then £ is a projection operator which maps
each vector in R to its projection onto the subspace %. We note
the following properties of the projection operator:

(a) 2 is linear: P(av, + Bv,) = oaPv, + fPv,, &, /)’ER

(b) 2% =2 (Here 22v:= P(Pv))

(c) 1% is a subspace such that %' > % and &' is the prolectlon onto
' then for any veR?

Py =P(P'V).

The first two of these are evident. For (c), suppose that @' =
Z(uy,...,u,) for some m >m. By means of the Gram—Schmidt
procedure we can construct a basis x,,..., X, and numbers k, k' with
k <k’ <d such that % = £(x,,...,x,) and %' = #(x,,...,X;). For
veR?, denote v;=v'X,. Then #v=)%vx; so that P(P'v)=
ot = P, A v ¢ .
Now back to random variables. Suppose as before that ¥:=
(Yo, Yq,..., Y,)T is a random (n + 1)-vector such that for each i

" EY;=0,var(Y;) < o0,

and denote Q:=cov(Y ) We wish to associate these random vari-
ables with vectors vq,...,v, in such a way that

v.--v,-=cov(Y.-; Y)=EYY,

More precisely, let 5 denote the set of all linear combinations of the
random variables Y,,...,Y,, ie.

= { Y o Ya =(oco,...,oz,,)eR"“}.
i=0

We take the function U, V= EUV as an ‘inner product forU, Ve,

. Note that EUV is entirely determined by the covariance matrix Q
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since if U, Ves# then U =a"Y and V =b"¥ for some a,beR"*! and
then EUV =a"Qb. We wish to construct a function @:# — R for
some integer d with the following properties

(a) ¢ is linear, one-to-one and onto

(b) ¢ is inner product preserving:

o(U)-@(V)=EUV. (3.1.5)

Such a function ¢ always exists. Recall from Proposition 1.1.3 that by
factoring Q in the form Q = AAT we can express Y in the form

Y=A4Z

where ZT=(Z,,...,Z,) is a vector of unit variance uncorrelated
random variables and d <n + 1. Now define

(P(Zi): =1;
where z,,...,24 is the coordinate basis of RY, and

d e
TZ):= Y az; for aeR’
i

~Since # = {a"Z:aeR’} this defines ¢(U) for all Ues#. By construc-

tion, ¢ is linear and onto, and an immediate calculation shows that
(3.1.5) holds. In particular if we define v;:=@(Y;) = qo(zka,-ka)
then we see that

viev;=EY;Y,

To check that ¢ is one-to-one, suppose that ¢@(U)= ¢(V); then
oU—-V=pU)—@(V)=0 so that EU-V)?=eU-V)
(U —-V)=0. Recall by the way that EU-V)?=0
if and only if P[U = V] = 1. Thus this theory does not distinguish
between equivalent random Vdndbles, ie. if P[U V]=1 then
o(U)=p(V).

The existence of the map @ means that the geometrical pro-
perties of the space 2 with ‘inner product’ EUV and ‘distance’
[E(U — V)?]"Y? are identical to those of Euclidean space R To
illustrate the utility of this, let #" be the subspace spanned by
Vi....,V,wherev; = @(Y;)and let ¥, be the projection of voonto V. Then

00 =0a,Y, +o (X,,V"_
for some constants a,,...,a,, and the corresponding element of # is

i\,0:= (P_l(vO)‘:al Yl + o +0(,,Y,,.
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Now recall that 9, is the closest point in ¥ to v,:

190 = Yolt = min’ll Vo —uf.

Tt follows from (3.1.5) that E(U V)2 = | @(U)— (V)% thus P,
satisfies

E(Yy— ¥o)? = min E(Y, — U)?
1%

where the minimum is taken over all linear combinations U =
" «;Y;. But this means that ¥, solves the linear estimation problem.
o has the property that E[(Y,— ,)¥;]1=0, i=1,2,...,n, ie. the
error Y, — ¥, is uncorrelated with the observed random variables
Yi,..., Y, just as in the scalar case.

We can dispense with.explicit mention of the map ¢ and Euclidean
space R% Just think of the random variables as ‘vectors’ with lengths
equal to their standard deviations and ‘inner product’ given by the
covariance. Thus two random variables are ‘orthogonal’ (and we
write U L V) if they are uncorrelated, and the best linear estimator ¥,
is the ‘projection’ of Y, onto thesubspace’ £(Y,..., Y,) spanned by
Y;,.... Y,

Let us summarize the results we have obtained. At the same time we
generalize to the vector case, replacing Y, by a p-vector X.

Theorem 3.1.1

Let X and Y be random p- and n-vectors respectively, all components
having zero mean and finite variance. (Here, Y™ =(Y,,..., Y,).) Then

for each j=1,...,p there is a unique (up to equivalence) random

variable )? . such that:

() X,e2(Y)
(b) X;— X, L2(Y).

£T:=(X,,...,X,) is the minimum mean-square error estimate of X
given Y, ie. for any feR?

E[(fT(X — X)]? = min E[«"X — UJ2

UeZ(Y)
If cov(Y) is non-singular then X is given by

X =E[XYT][cov(¥)]71Y. (3.1.6)
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REMARK Bya sllght abuse of terminology, X is referred to as the
prOJectlon of X onto #Z(Y).

~ PROOF Only the last part remains to be established. By definition,

X = AY for some p x nmatrix 4. Using the orthogonality relation (b)

we see that for any feR?, yeR"
E[BT(X — AY)(y"Y)]1=0
ie. '
BTEXYT—AYYT)]y=0.
This implies that 7 |
E[XYT] - AE[YYT] =0

and hence that 4 = E[X YT][cov(Y)] ™! if cov(Y) is non-singular. If
cov(Y)issingular then some components of Y are linearly related and

it may be possible to express X in several different but equivalent

ways.

Random variables with non-zero mean

Let us consider the same problem as above (with scalar Y;) but
supposing now that the random variables have possibly non-zero
means

‘ EY,=m; i=0,1,..,m

This situation easily reduces to the zero-mean case. Rather than a
linear estimator, it is preferable now to use an affine (linear +
constant) estimator:

Y0=OC1Y1+"'+O(,,Y,,+B.

We have to choose a,...,q,, B to minimize E[Y, — ¥,]%. Minimiz-
ation can be carried out over these coefficients in any order, so let us
fix o¢;,...,%, and minimize first over f. Define

U=Yy—o, Y- —0,Y,.
Then
E[Y,— ¥;1* = E[U - p1*

—~ o~ ~~ ~~
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It was shown in Proposition 1.1.1 that this is minimized by taking
B=EU=my—aym, — - —m, '

Incidentally, this justifies our previous implicit choice =0 for the
zero-mean case. With the above choice of f we see that

E[Yy— 9,02 =E[Y5— (2, Y§ + *+* +0,Y9)]? (3.1.7)

where Y{is the ‘centered’ random variable Y§ = Y; — m;. We now have
to choose a,,...,a, to minimize (3.1.7), but this is the zero-mean
problem that was solved before. Let P be the covariance matrix of Y,
now given by

, Pij=E[(}'i—mi)(Yj_mj)]'
If P is non-singular, then from Theorem 3.1.1 ,
¥, =(Y —m)TP~E[(Y — m)(Yo — mg)] + mq (3.1.8)

where m = (m, ..., m,). Notice that the error Y, — ¥, always has zero
mean.

To get the geometric picture for this case we adopt the rather
artificial, but convenient, stratagem of adjoining to the observations
another random variable denoted 1 which takes on the value 1 with
probability one (thus no new ‘information’ has been added). ¥, can
then be regarded as a Imear (no longer affine) combination of the
observations:

Yo=51 +oc1Y1+ +oc,,Y,,

As before, random variables U, V are regarded as vectors with inner
product EUV, but note that this'is #not now the covariance, which is
E(U — EU)(V — EV). Now U L1 if EQU)= EU =0 and thus if we
express U as

U =(EU) + U°®

then the first term on the right is the projection of U onto the one-
dimensional subspace spanned by the random-variable 1. Thus the
random variables 1,Y,,...,Y, form a vector space of dimension
k <n + 2 consisting of a (k — 1)-dimensional subspace of zero-mean
random variables (spanned, in fact, by Y5, ..., Yi)and a 1-dimensional

- subspace spanned by 1. The best estimate of Y, is the sum of its

projection into &£(Y4,..., Y;) and its projection onto .£(1) and these

projections are the two terms on the right of (3.1.8), respectively. - .
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The normal case

As pointed out at the beginning of this chapter, only means and
covariances are required to calculate best linear estimators. If we
suppose that the random variables involved are jointly normally
distributed then we get the following result strengthening Theorem
3.1.1.

Theorem 3.1.2

Let X and Y be as in Theorem 3.1.1 but with possibly non-zero means
and suppose that X and Y are jointly normally distributed. Then the
best affine estimate of X given Y coincides with the conditional
expectation E[X|Y]. ‘

prROOF Consider first the zero mean case. Since X = AY for some
matrix A, the random variables (X,X,Y) are jointly normally
distributed, and (X, — X,) is uncorrelated with and hence independ-
ent of Y; for each i, j. Using the properties of conditional expectation
given in Proposition 1.1.4 we see that, with X = X — X

E[X|Y]1=E[X + X|Y]
=X+ E[X|Y]
=X+EX=X

If X,Y have non-zero means My, My, Write X=X —my, Y=
Y- my. ‘Then

E[X|Y]=E[X" -I-.mxl Y] =my+ E[X°|Y].

It follows from Proposition 1.1.7 that E[X°|Y]=E[X®|Y*] and the
latter expression coincides with the best linear estimator. This
completes the proof. |

This result shows that in the normal case X is the best estimate of X
not only in the class of affine functions AY + b but also in the class of
all finite-variance functions g(Y). It also shows that the conditional
distribution of X given Y is normal with mean X and covariance
cov(X — X). This follows from the fact that X = £ + X where X is a
function of ¥ and ¥ is independent of Y. We have thus, somewhat
belatedly, completed the proof of Proposition 1.1.7(¢) of Chapter 1.
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3.2 Recursive estimation

The idea of recursive estimation arises when random variables
Yy, Y,,...are observed sequentially and we wish to process them in
rea] time to form successive best estimates of an unobserved random
variable Y. At time n we can form the best linear estimate Yo of Y,
given Yy,..., Y, by using formula (3.1.9) (supposing that all means are
zero and that the covariance matrix P,=cov(Y,,...,Y,) is non-
singular). Note that this involves inverting the n x n matrix P,. At the
next time instant we have one more observation, Y, ,. How are we to

~ compute ?o'nﬂ? The most obvious way would be to apply the
same formula again. However, if we do this successively for
n=123,...,then:

(a) It is necessary to store the entire observation record as this
‘becomes available; and,
(b) At each time n, an n x n matrix must be inverted.

Obviously, the computational effort required to do this becomes
massive even for moderate n. Is it really necessary, at each stage, to
throw away the results of all previous calculations, or is there some
method by which ¥, , can be updated using the new observation Y, .1

to give ¥,.,+,? The simplest form such an updating could take is as

follows:
?0,n+ 1= a4y ?O,n + bnYn+ 1 ' (3.2.1)

i.e. the next estimate is a linear combination of the current estimate
and the next observation. Only in special cases will a formula such as
(3:2.1) be possible, but these include important applications such as
the Kalman filter discussed in Section 3.3. -

In this section we discuss the general relation between successive
estimates. In view of later applications it is convenient to deal from
the outset with the vector case. Thus suppose x is an n-vector random

variable and y,, y,,... are r-vectors of observed random variables.!

All random variables will be taken to have zero mean and finite
variance, and to avoid difficulties with non-uniqueness it will be
supposed that the covariance matrix of the rk-vector  y* =
col{y;,ys,.. ¥} is non-singular for each k.

*In accordance with the established notational conventions of Kalman filtering theory
these are denoted by lower-case letters. '
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Denote by Z(y*) the linear subspace spanned by the observations
up to time k, and by 2, the best linear estimate of x given ¥, i.e. the
projection of x onto £(y*). (Recall the notational conventions for
projection of vector r.v.s introduced in Section 3.1).

ZL(y*~1) is a subspace of £(*). Let §,,_, be the projection of y, °

onto #(y*~') and J,,_, the error: J,_, =y, — Y, The random
variables {)7; 1 i=1,2,...,r} span the orthogonal complement of
L Yin i)(y’é), so that any r.v. Z in #(y*) has a unique orthogonal
decomposition .

Z = Zl + Zz

where Z,e£()*~!) and Z, is a linear combination of {Fap—roi =
1,...,r}. Take in particular Z = £{; then we claim that Z, =% _,.
Indeed, let Xf = x' — Xi be the estimation error at time k. Then

K=+ X =2, +(Z,+ %)
where Z,e£(y*"!) and (Z, + %) L £(y*~'). But we also have
xt= Koy + Fmy

and again %}_,;e£(* "), %(_, LL(*"). Since such orthogonal
decompositions are unique, it must be the case that Z, = %{_,, as
claimed. As to Z,, this is the projection of £} onto #( Juk—1) and this is
the same as the projection of x’ onto Z(¥,,_,) since L(J,_,) = L (),
But this projection can be calculated using formula (3.1.9) again.
Collecting the above results we see that %, can be written in the form

$e=Rm s+ EDF JED e ) 0= ) (322)

In general this is not a recursive formula for %,, since §,,_, depends
on y,...,J-1. It is a recursive formula precisely when this de-
pendence factors through 2,.,. Let us examine an important
example where this occurs. :

Example 3.2.1
Suppose
y=Hx+z,

where H is an r x n matrix and z},z,,...is a sequence of mutually

. uncorrelated random variables with zero mean and common cova-
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riance cov(z,) = N > 0. We also suppose x and z, are uncorrelated for
each k. Thus y, represents a sequence of ‘measurements’ of x with
uncorrelated measurement errors zk Let P be the covariance matrix
of x.

In this example 9, , -is the projéction of y;=Hx+z, onto
Z(y*~') and this is the same as the projection of Hx onto Z(y*71)

since z, L .Z(y" 1), Thus
pklk—l = ka—i
and (3.2.2) becomes
Ry =Ry + Kk)Yy, — HR—y) (3.2.3)

where K(k) denotes the matrix coefficient in (3.2.2). This is a recursive
formula for 2, and it only remains to calculate K(k). We will do this in
two ways: the ‘slick” way specifically adapted to this problem, and by
use of a general technique which will be useful in connection with the
Kalman filter in the next section.
The slick way is to notice that the y, are interchangeable, in that 1f
R=Ay+ 0+ A

then all the A; must be the same, since the correlation structure of the
random . variables would be completely unchanged if any two
observations y; and y; were permuted. Denote by j, the sample mean

1k : 1 &
- =§; y;=Hx ""E-Z z,=Hx—Zk.
The noise sample mean Z, has covariance N/k and our contention is
that
2 =Ay,
for some n x r matrix A. The orthogonality condition is -
x—=%=(0—-AH)x— Az, L y;=Hx +z i=1,...,k

Since x is uncorrelated with z; and Z,, this is equivalent to requiring
that

(I — AH)E[xxT]HT — AE[z',‘z}r].= 0.

" Now E[xx"] =cov(x)=P and E[Z,z]] = N/k since the z; are mutu-

ally uncorrelated. The fact that this expression is independent of i
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confirms the ‘interchangeability’ argument Thus the orthogonahty’
requirement is: :

1

(I— AH)PHT = -];AN

and hence 4 is given by

1 -1

A= PI:IT[HPHT + EN] .

Notice that (HPHT + (l/k)N) is non-smgular, since by assumption
N >0. Thus

. 1 : 1 -1 k
2= AF = EPHTI:HPHT + EN] (i; yk>. (3.2.4)

Comparing this with (3.2.3), we see that the coefficient of y, is K(k) and
hence
. [ -1 o
K(k) =%PHT[HPHT +7EN] . (3.2.5)

The more general method of obtaining this result is to calculate
K(k) from the expression for it in (3.2.2). Now

Vg1 =V — Dp—1= (Hx +z,) — H%, -,
=H% -1 +2 (3.2.6)

where %, =x — %, is the error at time k — 1. Thus
E[x§-1] = E[x% - JHT
= E[%, - liz— 1]HT

since x=2%;_;+ %, and %,_,;L1%,_,. We denote Pk—1)=
cov(X,—,) (the error covariance at time k — 1). Similarly,

E[}’km e J= E[(ka 1+ Z)HE -y + 2)"]

=HP(k—1)H" + N.
This is non-singular since N >0, and hence
K(k)= P(k — )H'[HP(k — 1)HT+ N1~}

It remains to calculate P(k —1). Subtracting x from both sides of
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(3.2.2) and using (3.2.6) gives’

K= Foy — K(K)(HZ -1 + 2;)
=(I ~ K(OH)%, -, + KRz,

The two terms in this expression are orthogonal since
Xp-162(x,2y,...,2,,). Thus

P(k)= E[%%F] = (I — - K(QH)P(e = I — K(H)T + K(ONK (k)
3.2.7)

Now substitute for K(k) from (3 2.5). After alittle algebra one finds that
(3.2.7) becomes simply

P(t) = Pk — 1) — P(k — DH"[HP(k — )HT + N]" HP(k — 1.
(3.2.8)

Together with the initial condition P(0) = P = cov(x) this provides a
recursive algorithm for generating P(1), P(2),...and hence K(k) from
(3.2.5). In this example one can in fact obtain a closed-form expression
for P(k) from (3.2.4). Indeed, subtracting x from both sides of (3.2.4)
and using the fact that y, = Hx + , we see that

%, = <1_— PHT[HPHT+%NJ H)x

1 -1
+ PHTI:HPHT-FENJ .
Again, the two terms on the right-hand side are orthogohal, and
calculating the sum of their covariances we find that

Pk)=P— PHT[HPHT + %N] HP.

Some laborious algebra confirms that this indeed satisfies (3.2.8).
In this example the recursive estimator (3.2.3) offers no advantages
over the non-recursive form (3.2.4): in either case the main comput-
ational task at each stage is to invert an r x r matrix, so the general
problem of having to invert matrices of growing dimensions has been
avoided. The storage requirements are also similar: in (3.2.4) one
requires the sample mean j, at each stage and this can be updated as

follows:
- k—1 1
yk ( k )yk 1 + kyh
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" Thus in neither case is it necessary to store the complete observation
record. In more general problems such as the Kalman filter consi- .
~dered below, it is usually not possible to obtain simple closed-form

expressions for the estimator, but the recursive solution may still be

viable. From the implementation point of view this is perfectly -

satisfactory. The coefficient matrices K(k) can be computed in
advance and then the ‘data processing’ consists of on-line implement-
ation of the very simple algorithm (3.2.3).

3.3 The Kalman filter

The Kalman filter is a recursive algorithm for estimating the state
xk of a state- -space model given the values of the observed outputs

Y= y,, Y1:Y25+++, Yk—1)- The equations describing the model are -

Xes 1= AKX, + B(k)uy + Cll)w, (3.3.1)
Ve = Hk)x, + G(k)w, (332)

Here, {w,} is an l-vector white-noise process with unit covariance
(Ew,wi = I,) and the initial random variable x, is uncorrelated with
{w,}, with known mean and covariance m,, P, respectively. The
coefficient matrices A(k), etc., may be time-varying, as indicated by
their dependence on k in (3.3.1), (3.3.2). The model is, in this respect,
more general than that of Section 2.4. We assume that

G(k)G(k) > 0  (333)

(in particular this implies that / 2r, r being the dimension of y,).
If this were not the case then there would exist vectors A such that
ATG(k) =0, so that, from (3.3.2),

j.Tyk = ATH(k)xk

ie. certain linear combinations of components of x, could be
measured exactly. Thus (3.3.3) says essentlally that all observations
and linear combinations of observations.are ‘noisy’.

The sequence u, is the m-vector control input. In this section we
suppose that this is a deterministic sequence. In future sections we shall
wish to consider feedback controls, where u, depends on the observed
outputs y¥, but this presents a more delicate situation, con31derat10n
of which we defer to Section 6.3 below.

The example considered in the preceding section is a specxal case of

l

—~

N
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the model (3.3.1), (3.3.2): take A(k) = I,, B(k) = C(k) = 0, H(k) = H and
G(k) = N'72 (so that r = m). We saw there that the estimators %, could
be computed recursively, and the same is true for the general state-
space model considered here. The situation is complicated somewhat
by the fact that the signal being estimated is not constant but is itself a
stochastic process, and by the possible correlation between signal and
observation noise. Nonetheless, the derivation of the Kalman filter
equations follows exactly the same approach as used in the example.
We denote by %;; the’ best linear (or affine) estimator of
x; given y/ = (yo, vys..., ;) i.e. the projection of x; onto .£(y’), and by
x;; the error (x;—%,), with similar notation for other random
variables. It turns out that the most useful form of estimator is the
‘one-step-ahead’ estimator %, _,.

Theoreth 3.3.1 (Kalman ﬁltér)

Forthesystem(3.3.1),(3.3.2) with the above assumptlons, the estimator
R satisfies the recursive equation

Riwrpe = ALy, + Blk)uy + K(k) [y, — Hk)%y 1 k=0,1,...
(334
JAC(,l 1 = mo.

The n x r gain matrix K(k) is given by
K(k) = LA(K)P(k)H" (k) + C(k)G™(k)1LH(K)P(k)H T(k)
+ G(k)G™ (k)] 1 (335
where P(k) is the error covariance ' .
P(k) = E[(x, — Jék|l<- D — fck;k_ 1)T]'
P(k) satisfies the recursive Riccati equation:
P(k + 1) = A(k)P(k)A™(k) + C(k)C"(k) — [A(k)P(k)H (k)
+ Ck)G(k)ILH(K)P(k)H (k) + G(k)G™ (k)] ™"
‘[A(K)P(K)HT(k) + C(k)GT(R)]" - (3.3.6)
P(0) = P, ‘ |
The innovations process
=V— H(k)')?klk.'.]
is a wide-sense white-noise process with covariance function
E[vp]]= [H(k)P(k)H(k) + G(k)G (k)16
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If in addition to the above assumptions (xg, Wq, Wy,...) are join’tly
normally distributed, so that in particular {w,} is a gaussian white-
noise process, then

Ri—1 = Elx|y*~1].

REMARKS To implement the Kalman filter, the sequence P(k) is
computed from the Riccati equation and the corresponding sequence
of n x r ‘gain’ matrices K(k) is computed using (3.3.5). All of this can
be done off-line, i.e. before any observations are taken. Calculation
of %, can now be done recursively using (3.3.4) as successive
observations become available. The fact that all the coefficients in
(3.3.4) can be pre-computed (are not data-dependent) means that the
amount of on-line signal processing required is very modest, and this is
important in applications where computing power is at a premium.
Note, however, that it is assumed that all coefficients appearing in the
problem — i.e. the matrices 4, B, C, H, G as well as the initial state mean
and covariance my, P, — are exactly known.

PROOF Suppose to start with that my = 0 and u, = 0 for all k. Then
Ex, =0 for all k and hence all random variables in system (3 3.1,
(3.3.2) have zero mean. From (3.3.2) we see that!

.9k|k-: = ,H’eklk'-x

since w, L _?(y"' 1), and hence the basic recursive formula (3.2.2) with
X =X, gives

Rue = Xupe—r + ELxF -1 JEDFp— F i1 1) ™ s — Hzy ). 3.3.7)
(It will be verified below that cov(J,,_,) is non-singular). Now
V=1 = Ve = Doy = HXy_, + Gw, '(3.3.8)

(this coincides with the innovations process v, of the theorem
statement) and hence

E[xkf/gk-x] = E[xk(gl-{lk»-lHT +wiG")]
= If‘(k)HT
where P(k):= cov(%,,_,). The last equality follows by noting that
X, L w, and that x, has the orthogonal decomposition x, = Kooy +

tFor notational simplicity we write H for H(k), etc.,throughout the following argument.
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% Similarly,
E[Jy—1Jiu-11=HPk)HT + GG™.

This is strictly positive definite, and hence non-singular, since
HP(k)HT=20 and GG">0. We now have to relate %, to
Ry, From (3.3.1) we see that (since u, = 0)

’ek+1|k = A‘)eklk + kalk'

Now w, L £(y*~") and hence the best estimate W, of w, given y* is
equal to the best estimate given j,_, which, according to (3.1.6), is

' Wklk = E[wkyl-gk—l]E[ﬁkm_[ﬁl\Tm_ |:| - ’}7,,,,,_ 1 (339)
Using (3.3.8) we obtain
E[wJix-1]= E[wwi GT] = G". (3.3.10)

Combining (3.3.7)-(3.3.10) gives
Reein = ARy, + PHYHPH" + GG") ™' §,,_,1
+ CGT(HPHT + GG ', (3.3.11)

which is equivalent to (3.3.4)~(3.3.5). The best estimate of x, with no
observationsis 0 since Ex, =0 and hence the initial condition for
(3.3.11)is x_, = 0. To compute the conditional covariance we use the
same technique as in the example of the preceding section. Subtract-
ing (3.3.4) from (3.3.1) and using (3.3.8) shows that the error %,,_,
satisfies the recursive equation :

o= (4 — KH)Ey_, +(C— KGw,. (3.3.12)

We can therefore compute the covariance by using the general results
given for the state-space model in Proposition 2.4.1". Indeed,
" replacing A and C in (2.4.7) by (4 — KH) and (C — KG) respectively,
we see from (2.4.7) that P(k) = cov(%,,_,) satisfies
P(k +1)=(A — KH)P(k)(AT — H'K™) + (C — KG)(GT — GTK™).
(3.3.13)
Substituting from (3.3.5) the expression for K in terms of P(k), one
obtains, after a little algebra, the variance equation (3.3.6).
Finally, suppose Ex, = m, # 0 and that u, is also non-zero. Then
m(k) = Ex, satisfies
m(k + 1) = Am(k) + Bu(k)
m(0) = m, © (3.3.14)
" Equation (2.4.7) is valid for time varying models with A = A(k) etc.
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and
Eyk=Hm(k).

now
Rt = Xy + m(k)

where 2, _, is the projection of x{ = x, — m(k) onto 2((y*)*~1). But
X;» Vi satisfy the equations

X+ 1 = AX; + Cw,
Xp =X — Mg
Yi=Hx{ + Gw,

so that the computation of X5, _, is the zero-mean estimation problem
we have just solved, i.e. £§,_, satisfies :

Rhrie = Axfy_, + KKy — Hxjy_y)
25-1=0. (3.3.15)
Note that '
Ve — H ey = (v, — Hm(k)) — H(’ek|k—1 — m(k))
=W H')ekllwl'
Thus, adding (3.3.14) and (3.3.15), we obtain (3.3.4). P(k) given by

(3.3.6) is still the error covariance, cov(x, — Rue—1)» Since covariances -
“are unaffected by a shift of mean.

~ Finally, suppose xo, wo, wy,. .. are jointly normal. Then (xXpy)isa
normal process, since (3.3.1) (3.3.2) are linear equations, and it follows
from Theorem 3.1.2 that £,,_, = E[x,|y*"]. .

Example 3.3.2

The example considered in Section 3.2 above is a Kalman filtering
problem but a somewhat special one in that there are no ‘system
dynamics’. As the simplest example involving dynamics, let us
consider estimating the autoregression

xk+l = an + Uk (3.3.16)

given noisy observations

Vi =X + Wy

As shown in Section 3.1, the best affine estimator of x, given y*~? is

N

any N N N N N N
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Here all quantities are scalars and we assume that v,, w, are
uncorrelated unit variance white-noise processes. The initial random
variable x, is supposed to have mean and variance m, and P,
respectively. The Kalman filtering equations (3.3.4)—(3.3.6) become

aP(k)

e = Byems + 750 U= Fa) (3.3.17)
fq_ =My
P(k + 1) =a*P(k)+ 1 -.I‘Z:P_;((%
_(+aP@+1
Pk)+ 1

1t is interesting to note the behaviour of P(k). Figure 3.2 shows the
evolution of P(k) starting from Py = 2 for a = 1/2, 2. It converges very
rapidly towards a steady-state value, which in fact is the positive
solution P* = P*(a) of the algebraic Riccati equation

_(1+a)P*+1

P*
P*+1

(3.3.18)

This solution is given by
P*=3(a*+ /(a* + 4))

(the other solution of (3.3.18) is negative). If P, = P*(a) then P(k) =
P*(a) for all k and the Kalman filter (3.3.17) is time invariant (has

oy Pl
) I
a=2
3—
J3
0 r
0 1 2 3 4 5 %k
Fig. 3.2
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constant coefficients). Otherwise the filter is asymptotically time-
invariant, the gain K(k) converging to the steady-state value K* =
aP*(a)/(1 + P*(a)). This is true even if the state equation (3.3.16) is
unstable (a > 1). In this case var(x,) — coas k — co but the conditional
variance P(k) remains bounded. One of the curves in Fig. 3.2 shows
this for a = 2. Now P*(2) =4.2361"so that the steady-state Kalman
gain is K* = 1.618. From (3.3.12) the error X, _, is given by

= (a— K(k))iklk-—l + v — K(kyw.

For large k, K(k) is close to K* (or exactly equal to K* if Py = P*) so
that this equation becomes

Ko =0382%,,_, +0v,—1.618w,

which expresses X, _, in the form of a stable autoregression. The point
is that var(x,) = var(%,,_,) + var(%,,_,), and var(X,,_,) remains
bounded even through the other two terms do not. Intuitively, the
observer has enough information to ‘track’ x, successfully although it
is generated by an unstable system.

Compatatfon of P(k)

For the general system (3.3.1)—(3.3.2) with time-varying coefficients,
the Kalman filter is implemented by precomputing the gain sequence

- K(k) and this of course involves 'calculating the sequence of cova-

riances P(k). In principle this can be done by direct recursion of the
Riccati equation (3.3.6) but that is not in fact a very good way of doing
it, since (3.3.6) is numerically ill-conditioned. The three terms on the
right of (3.3.6) are symmetric and non-negative definite, but the last
one is subtracted, so there is nothing preventing non-negative
definiteness of P(k + 1) from being lost, and if this ever happens the
Riccati equation can become completely unstable. Consider for
instance the example in Section 3.2. Taking the scalar case  with
N = H =1, the Riccati equation (3.2.9) becomes
Pk —1) Plk—1)

P(k)zP(k—l)—l+P(k—1)=1+P(k—1)'

Thus q(k):= P~ (k) satisfies
qglk)=14qlk —1). _
Now suppose P, = — 0.1; what happens? The moral is that P(k) must
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be computed in such a way that successive terms of the recursion are
intrinsically non-negative definite. The simplest way to do this is to
use (3.3.5) and (3.3.13):

K(k)=[AP(k)HT + CGT][HP(K)HT + GGT]~!
P(k + 1) = (A — K(k)H)P(k)(A — K(k)H)T
+ (C — K(k)G)(C — K(k)G)™.
This is much better, as now P(k + 1) is expressed as a sum of non-
negative definite térms.

An alternative approach is to propagate a square root of P(k), ie.
calculate matrices W(k) such that P(k) = W(k)WT(k), an idea that has
been the subject of considerable research. The situation is com-
plicated by the fact that such a factorization of P(k) is not unique and
therefore a variety of different algorithms is possible. Some
references to this subject are given in the Notes at the end of this
chapter '

3.3.2 Time-invariant systems

Suppose that the coefficient matrices 4, B, C, H, G in the system model
(3.3.1), (3.3.2) are time-invariant (do not depend on k). The results of

the above example suggest that we should study the algebrazc Riccati .

equation
P=APAT +CC"— [APH" + CG"]
-[HPH™ + GG™]" '[APHT + CG™]T. (3.3.19)

If the initial covariance P, satisfies this equation then evidently, from
(3.3.6), P(k)= P, for all k, and the Kalman filter (3.3.4) is time-
invariant since now K(k), as well as the other coefficients, is a constant
matrix. Notice that this does not imply that the state process x,
(with'u, = 0) is wide-sense stationary. The condition for this was given
in Proposition 2.4.1 and is

Po = APoAT+ CCT.

Equation (3.3.19) represents a trade-off between two opposing effects:
on the one hand the observer is learning more about x, as more data
accumulates, but on the other hand the position of x, may become less
certain as it moves away from its initial position. The initial
covariance which satisfies the algebraic Riccati equation is the value
at which these factors exactly balance, leaving a precisely-constant
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degree of uncertainty as to the position of Xq as measured by the

estimation error covariance.

Under what conditions does the algebraic Riccati equation have a

solution? Can there be more than one solution? It seems clear that the _
- answers to these questions must be related to stabilizability and-

detectablhty properties. Suppose for example that one of the states xk
is completely unobserved by the output. Then the best estimate for x{
is just its mean Ex{, and the mean square estimation error is E(xj —

Ex;)? = var(x}). This converges only if x} is stable. The questions of
existence of solutions to the algebraic Riccati equation, and conver-
gence of the sequence P(0), P(1),... of matrices generated by the
Riccati equation (3.3.6), are studied in detail in Appendix B. Itis a
fundamental feature of linear system theory that the same Riccati
equations appear in connection with a certain optimal control
problem, the linear regulator problem, which is discussed in Section
6.1. The properties of these equations are most readily obtained from

control-theoretic considerations, and we therefore limit ourselves

here to stating the results and giving some interpretation of them in
the filtering context. :
We require matrices A, C defined by
A=A—-CG"(GG") 'H
¢ =C[I - GY(GG")~'G].

“ Theorem 3.3.3

(a) If the pair (H, A) is detectable then there exists at least one non-
negative solution to the algebraic Riccati equation (3.3.19).

(b) If further the pair (4, C) is stabilizable then this solution P is
unique and P(k)—P as k—co where P(k) is the sequence
generated by (3.3.6) with arbitrary initial covariance P,. The
matrix A — K H is stable, where K is the Kalman gain correspond-
ing to P, i.e.

K=[APH" + CG"]J[HPH" + GG™]" .

PROOF This is Theorem B.1 of Appendix B. In Appendix B the
Riccati equation appears in different notation, appropriate to its role
in the control problems of Chapter 6. One obtains (3.3. 19) by
identifying coefficients as in Table 6.1. Tt will be found that A
corresponds to AT and C to DT. 0

— N
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Note that the Kalman filter equation (3.3.4) can be written
Zs i = (A = K(QOH)%y_, + By + K(k)y,. (3.3.20)

The above results say that, under the stated conditions, this will be a
time-invariant system (i.e. K(k) = K for all k) if P(0) = P, the solution
to the algebraic Riccati equation. If P(0) ## P then the gain sequence
K(k)tends to the stationary value K as k — 0o, Thus the filter is almost
time-invariant for large K and furthermore the filter is stable in that
the system matrix 4 — KH in (3.3.20) is stable. Convergence to the
stationary state is often rapid, and this justifies the widely employed
practice of using the time-invariant filter even when P(0) # P.

The following remarks are intended to illuminate the role of the
matrices (A4, C) which appear in the conditions of Theorem 3.3.3.
Returning to the state-space model (3.3.1), (3.3.2), let us denote

= Cw,
fk ka ka

These are the ‘noise’ terms appearing in the state and observatlon
equations respectively. They are not uncorrelated —in fact

* cov(e,, fi) = CGT - but e, and f; are uncorrelated for k # I since w, is

white noise. The best estimate ¢, of ¢, given f, is give by the general
formula (3.1.6) as

=CG"(GG")"1f,
and the covariance of the error &, = ¢, — ¢, is
cov(&) = C[I — G'(GG")~'G][I — G(GG")~*G]"C"
=CC". '
Thus we can express &, in the form
& = Cu,

vyhere f:ov(vk)=1 and v, is (like &) uncorrelated with | J; for all |
(including [ = k). The state equation (3.3.1) now becomes

Xp41 = Axk‘+ Buk + ék + ék
= Ax, + Bu, +CG"(GG")~Y(y, — Hx,)+ Cv, -

X +1 = Ax, + Bu, + CGT(G GT) Vi + évk
V= ka + Gw,.
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This expresses the system in a form in which the noises appearingin the
state and observation equations are uncorrelated (at the expense of
adding an extra ‘feedback’ term from y, to x; ;). The stabilizability
and detectability conditions stated above refer to the system in this
form, involving matrices (4,¢C, H) rather than the original (4, C, H).
(Note that detectability of (H, A) is equivalent to detectability of
(é—l ,A))If CG™ = O then e, and f} are already uncorrelated and 4 = 4,

=C. )

Computation of the solution of the algebraic Riccati equation has
been the subject of active research and the best algorithms are of
comparatively recent vintage. It is true that P(k) generated by (3.3.6)
converges to P but as an algorithm this is not numerically robust. We
do not discuss this subject here; see the Notes at the end of the chapter
for further information.

3.4. Innovations representation of state-space models

In Section 2.4 it was shown that the state-space model and the
ARMAX model

Az Yy = B(Z‘ N+ Clz™w,

are interchangeable in the sense that the ARMAX model can be
realized in state-space form, while a state-space model can be recast as
an ARMAX system by calculating its transfer function. The two forms
are complementary: the ARMAX model is preferred in system
identification because of its ‘parsimonious parametrization’ (as Box
and Jenkins (1976) put it), while optimal control theory has been
developed primarily for state-space systems. In this section we discuss
further the concept of an innovations model, which was already briefly
introduced in Section 2.5. Recall that the state-space model .

xk"'l = Axk + Buk + ka
Y= ka + GWk

is in innovations form if the matrix G is non-singular, and that the
standard state-space realization of the ARMAX model has this
property. The main result of this section, Theorem 3.4.1 below, states
that to every state-space model (subject to mild restrictions) there
corresponds an innovations model with the same external behaviour:
This result is an important by-product of Kalman filtering theory. It
implies that, in terms of input-output modelling, the class of

(3.4.1)
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innovations-form state-space models is just as rich as that of state-
space models as a whole, a fact which is by no means apparent since
the innovations model involves fewer parameters and a reduced
number of noise inputs.

We consider the system (3.4.1) with time-invariant coefficients 4, B,
etc., and made the following assumptions:

“(a) The matrix A4 is stable. (34.2)
(b) GGT > 0.

Condition (a) does not imply that (4, C) is stabilizable, or conversely;
see the example at the end of this section. ’

The input—output properties of (3.4.1) under stationary conditions
were derived in Section 2.4. The state x, has covariance Q satisfying

" Q=AQAT+ CCT (3.4.3)
and the equations represent a linear system as shown in Fig. 3.3. Here
£ is a linear system with transfer function

Tz ')=z'HI—-z"'4)"'B

and j, is a stationary process with covariance function
cov(y _)_'HQHT+GGT k=1
LWZVHAFQHT + HATFICET Ik
In accordance with the introductory remarks in Chapter 2, we

describe this as an external model. v

Now consider the Kalman filter (3.3.3)—(3.3.6) for this system with
the constant gain K corresponding to a solution P of the algebraic

Riccati equation (such a solution exists since (3.4.2) (a) implies that
(H, A) is detectable) P'and K satisfy oo

P=APAT + CCT — (APH™ + CGY)

(HPHT + GG™)"Y(APH™ + CG™)" (3.4.5)
K =(APH™ + CG")(HPHT + GG™)~? (3.4.6)
Y
4—> £ 3 ;V+ %
Fig. 3.3

(34.4)
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Recall that the ‘innovations process’
Pupe—r = Y — HXy, =1 (3:4.7)
consists of uncorrelated random vectors with covariance
cov(Jy_) = HPH" + GG™. (3.4.8)
Let D denote any rxr square root of this covariance, i.e. any r x r
matrix satisfying
| DDT=HPHT + GG (34.9)

Now consider the following state-space model with state &,, output #,
and normalized: white-noise input e, (cov(e,) = I.):

€k+1 =Af,‘+Bu,‘+KDek (3.4.10)

i r]k-:Hék +Dek. : ' (3.4.11)

Note that this is obtained from the Kalman filter equation (3.3.4) and

the definition (3.4.7) of the innovations process, with Se=Xu_1>

=Y, and De, = J, _,, but in (3.4.10) we are thinking of €. as an

exogenous white noise driving a state-space model in the standard

form. This system is called the innovations representation of the state-
space model (3.4.1).

Theorem 3.4.1

: Suppose conditions (3.4.2) hold; then the state-space models (3.4.1)
and (3.4.10), (3.4.11) are alternative realizations of the same external .

model.

PROOF lt is clear that the input-to-output transfer functions of the
two systems coincide since these involve only the matrices A4, B,H. Tt
remains to show that the output noise covariance of the innovations
representation coincides with (3.4.4). To calculate this let &, 7l be the
state and output processes in (3.4.10), (3.4.11) when u, =0. From
Proposition 2.4.2, the stationary covariance P of &, satisfies

P=APAT™ + KDD'KT
= APA + (APH™ + GG")(HPH"
+GCT~Y(APHT + GG,

- Adding this equation and the algebraic Riccati equation (3.4.5) we see

N N ~ SN
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that P + P satisfies ' S
(P+P)=A(P+ P)A" + CC™.
Thus in view of (3.4.3),
P+P=9Q.
Now the two terms on the right-hand side of (3.4.11) are uncorrelated,
and therefore
cov(i,) = HPH™ + DD"
= HPH" + (HPH" + GG")
=HQH" + GG™. »

This shows that cov(7,)=cov(y,). It remains to show that
cov(fy, ;) = cov (¥, Jp) for k#1 By direct recursion of (3.4.10) we
see that for >k,

E=A"*E + A IKDey + flers1se--r€1-1)
where f(-) is a linear function of the indicated random variables, all
of which are uncorrelated with &, e,. Thus _

E[fi] = E[(HA'*E,+ HA'™*"'KDe, + De)(& H™ + e}D’)]

=HA'""*PHT + HA'"*"*KDD"

=HA"*PHT+ HA' " *"Y{(APA™ + CG")

=HA"*QHT+ HA'"*"'CG™.
But this agrees with the expression (3.4.4) for cov(j;, ;) when [ > k.
Thus models (3.4.1) and (3.4.10) are both represented by Fig. 3.3

with additive noise whose covariance function is given by (3.4.4); ie.
they are the same system in terms of their external behaviour. O

It was shown in Section 2.4 that by calculating the transfer
functions of the models (3.4.1) and (3.4.10), (3.4.11) we can express
them in general stochastic dynamical model form as

=Pz Yu +Qz" Yw, - (3.4.12)
e =Pz Dy + Oz~ Veg (3.4.13)

respectively, where P, Q, § are matrices of rational functions. Q and 0
are not the same since the dimension of w, is possibly greater than that
of e, (it cannot be less, in view of condition (c) of (3,4.2)). None the less,
Theorem 3.4.1 implies that the spectral densities. of y, and #, with
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u, = 0 are the same, so that

| 0"07@) = 3z"H0).
This shows that the innovations representation is the most efficient
parametrization of the state-space model in the sense of giving a
desired output spectral density with a minimal number of uncorre-
lated noise inputs.

Finally, let us consider representing the (common) input/output
behaviour of our state-space models in ARMAX form. As shown in
Section 2.4 this can always be done by factoring out the lowest
common multiples of the denominators of P, Q and P, J respectively
in the general models (3.4.12), (3.4.13). Model (3.4.13) is the better
choice since the noise dimension is reduced, but the factorization
procedure is in general a laborious one. We now show that in the
single input—single output case one can read off the coefficients of the
corresponding ARMAX model after a simple change of coordinates.
We need to introduce the additional assumption that (H, A) is
observable. In a sense this assumption entails no loss of generality
since, as discussed in Section 1.2, if the system is not observable then it
is possible to construct a reduced-order observable system with the
same transfer function.

Suppose then that (3.4.1) is a single input—single output system
satisfying conditions (3.4.2) and that the pair (H,A) is
observable. Referring to Section 2. 4, note that the state-space
representation of the ARMAX model given in proposition 2.4.2 is

_ identical in structure to (3.4.10), (3.4.11) but has the additional feature

that the 4 and H matrices take a particular form (the so-called
transposed companion form). However, the general model (3.4.10),
(3.4.11) can always be put in this form by a change of basis in the state
space. Indeed, suppose T is any non-singular matrix and define

&=T"%%.
Then &, satisfies

My = HZk + De,
where
A=TAT™?
B=T"'B
R=T"'K .
H=HT
Y
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We claim that it is possible to choose T so that 4, H are in
transposed companion form. To achieve this, let w be any n-vector
such that the matrix

=[w ! Aw AW L AT ] (3.4.14)
is non- smgular Then
AT =[Aw A*w ... A"W]
and hence '
[0 0 | ]
1 0 |
0 1 .o
T AT = . . .| T7tA"w
- |
. 0 |
0 . |

This gets A4 in the appropriate form. We also require HT =
[0,0,...,0,1]. If this is to be satisfied, then by the definition of T,
and recalling that H is now a row n-vector, the vector w must satisfy

Hw=0
HAw=0
' : (3.4.15)
HA" 2w =0
HA" lw=1,
1e. . :
(I'w)"' =[0,0,...,0,17 (3.4.16)
where T is the observability matrix:
H
= HA
HA™

By assumption this is non-singular, and therefore (3.4.16) states that
(3.4.15) is satisfied if w is the last column of I' . It remains to show
that T defined by (3.4.14) is non-singular with this choice of w. But
in view of (3.4.15)
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H
HA ’
J:=TT= : [widwi- 14" 1w]
HA.n-l
0 -1
1‘ *
1 PRI

(where the stars denote possibly non-zeros elements). Thus J has
rank n, so that T=I"1J is non-singular. This completes the
identification of the state space and ARMAX models: once the
innovations representation of the state-space model has been trans-
formed to transposed companion form, the coefficients of the

corresponding ARMAX model can be read off by referring to the

state-space realization of the ARMAX model given in Proposition
2.4.3. In terms of the original model (3.4.1), these coefficients are
given by

a;=— [T 'A"W] i+t
b, = [T—IB]n—H-l
¢o=+/(HPH™ + GG")

¢ =coty+ [T7IK]" !

fori=1,2,...,n,where [x] denotes the ith component of the n-vector -

X. :
Finally, it is instructive to consider what happens when (3.4.1) is
already in ‘innovations form’. This occurs when y, and w, have the
same dimension and G is non-singular, so that (3.4.1) becomes

wy, = G~y — Hxy) )
xk+1=Axk+Buk+CG—1(yk—‘ka) )
=(A~ CG~'H)x, + Bu, + CG™'y,. (3.4.17)

If the initial state x, is known then the states x,,x,,... can be
recovered exactly from the observations by recursion of (3.4.17). If

N -~
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Xo is unknown, start (3.4.17) with an arbitrary initial state ¢ and
let X, be the resulting sequence of states, i.e.

Xy =(A—CG 'H) + Buy+ CG™ 'y,
%, =(A~CG™'H)%, + Bu, + CG™ 1y, (3.4.18)
etc.
Then ¢:= x, — X, satisfies
&1 =(A—CG™'H)g,
&g =X —¢,

so that g, —0 as k— oo as long as A — CG™'H is stable.
The following result is obvious by inspection but is worth pointing
out explicitly.

Proposition 3.4.2

Suppose that, in the model (3.4.1), y, and w, have the same dimension
and G-is non-singular. Then P=0 is a solution of the algebraic
Riccati equation (3.4.5).

These results help to evaluate the relationship between the various
cgnditions used above. Indeed, if G is invertible, then ¢ =0 and
A=A—CG™'H, so that the pair (4, C) is stabilizable if and only if
A—CG™'H is stable. Under this condition the algebraic Riccati
equation has a unique non- negative definite solution, and we know
that P=0 is a solution if G is non-singular. The corresponding

- values of K and D are, from (3.4.6) and (3.4.9), K =CG~ ! and D = G.

Thus the innovations model (3.4.10), (3.4.11) coincides with the
original model (3.4.1), as it should. For any ¢, the sequence %, given
by (3.4.18) with %, =¢ forms a sub-optimal estimate of x, which
nevertheless has asymptotically zero error covariance.

This example also helps to elucidate the relationship between the
conditions of Section 3.3 and those of (3. 4.2). 1If (H, A) is observable
then pole placement is possible, ie. the eigenvalues of the matrix
A+ SH can be assigned to arbitrary locations by suitable choice of
the matrix S. Thus obscrvablhty of (H, A) does not imply stabi-

' llzablllty of (4, C), which is equivalent to stability of 4 — CG™'H,

in the absence of any restrictions on C and G.-

NOTES AND REFERENCES 135
Notes

The idea of representing stochastic processes in terms of innovations
or orthogonal components goes back at least to Wold (1938) and
reaches its furthest development in the papers of Wiener and Masani
(1958). Prediction problems were tackled simultaneously by Wiener
(1949) and Kolmogorov (1941). (Wiener’s book contains the results of
previously classified wartime research.) Both of these authors were
concerned with stationary processes. The time-domain approach
based on state-space models was initiated by Kalman and Bucy (1960;
1961).

The literature on Kalman filtering is now immense. Textbook
accounts that we have found particularly informative are Anderson
and Moore (1979), Gelb (1974) and Maybeck (1979). All of these are
valuable colateral reading in that they cover applications issues not
discussed in this book. In particular, square root algorithms for

" propagating the conditional covariance matrix are discussed in detail

in Anderson and Moore and in Maybeck. Anderson and Moore
also discuss solution of the algebraic Riccati equation; for some. of
the latest work in this area, see Pappas, Laub and Sandell (1980).
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CHAPTER 4

System identification

An implicit assumption in the theory of optimal filtering and control
is the availability of a mathematical model which adequately
describes the behaviour of the system concerned. We pointed out in
Chapter 2 that such models can be obtained from the physical laws
governing the system or alternatively by some form of data analysis.
The latter approach, known as ‘system identification’, is discussed in
this chapter and is appropriate in cases where the physical mechan-
isms of the system are either highly complex or imprecisely under-
stood, but where the input/output behaviour of the system is
sufficiently regular to be represented adequately by fairly simple
models. ‘

The methodology of system identification involves a number of
steps:

(@) Selection of a class of models from which a model to represent the
system is to:be chosen.

«(b) Experiment Edesignz choice of the inputs to be supplied and the

readings to be taken in the identification experiment.
(c) Selection of a model on the basis of the experimental data. -
(d) Model validation: this involves checking the adequacy of the
chosen model in relation to some specific task such as prediction
or use as the basis of control system design.

- In this chapter we are concerned with the techniques of system
identification when the models considered are linear discrete-time
stochastic models of the sort described in Chapter 2. These models
represent linear time-invariant systems with stationary additive
random disturbances. Data analysis is then necessarily based on
statistical techniques. The field of statistical identification is however
a large one, and it is possible to treat only certain topics in the space
available here. Attention will be given almost exclusively to the
problem of how to analyse data from an identification experiment
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and thereby choose a suitable model from some given, finitely
parametrized, class of models. This aspect of identification is usually
called parameter estimation, even though this terminology mislead-
ingly suggests that there is some ‘true’ parameter value which
provides a perfect description of the system and which it is our task to
estimate. In practice we can never achieve a perfect description, and
the object of identification is merely to furnish-a model whose
response adequately approximates that of the system in significant
respects.

Even on the subject of parameter estimation we have been selective.
Emphasis is given to methods which admit a “prediction error’
formulation and consequently there is no mention of correlation
techniques (such as that of ‘instrumental variables’) which do not fit
into this framework. Our models all involve stationary disturbances,
so we do not discuss non-stationary behaviour — trends and seasonal
variations — which is so important in econometric time series. Nor do
we investigate issues of numerical stability. Some references to the
literature on these and other omitted toplcs are provided in the Notes
at the end of this chapter.

Our object in this chapter is to describe certan important
parameter estimation methods, and to investigate the quality of the
estimates in some cases where the analysis is relatively straightfor-
ward. The task of analysing the asymptotic properties of the estimates
in a general context is undertaken in Chapter 5.

4.1 Point estimation theory

Here we describe some classical concepts from point estimation
theory of relevance to identification. The problem considered in point
estimation theory is that of estimating the value of some function of
an unknown parameter given an observation of a random- variable x
whose statistical properties depend on the parameter.

To be more specific, suppose that /(- 8) is a collection of probability
densities in n variables, parameterized by vectors 8eD where D is
some set of g-vectors, and suppose d:R?— R" is some function of the

* parameter we are interested in, the parameter itself say. A random

variable x, which has density f(-, 8*) for some unknown 6*eD, is
observed. An estimator for d(0*) is a function g: R" — R". It supplies an
estimate g(x) of d(6*). We view an estimate g(x) of d(6*) either as a

- random variable, defined as a function of a random variable, or as the
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function g evaluated at the observation of the random variable x,
depending on context. It is understood that an estimate of d(6*) in
some sense approximates d(6*). Estimates of 6* are of primary interest
and we shall often refer to these simply as ‘estimates’.

What is a good estimator of d(6*)? In order to ask this question
precisely, we introduce the following definitions:

g(*) is an unbiased estimator for d(6*) if
Egg(x) = d(0), for all 0

‘where Eyg(x) is the expected value of g(x) given than x has the

probability density f(-, ), that is
- Egg(x)= f g(Q)f (&, 0)d¢

An unbiased estimate averaged over independent experiments gives
the correct parameter value, whatever this is.

Itis also desirable that the covariance matrix of g(x) be ‘small’. This
property in itself, however, gives little indication of the quality of an
estimator: the estimate g(x) =y, where  is some fixed vector, has
covariance matrix the zero matrix and yet it is useless as an estimator
since it will be biased except in the fortuitous circumstances that
i =d(8%). For this reason, bounds on the covariance of unbiased
estimates are of particular interest.

Theorem 4.1.1 (Cramér—Rao lower bound)

Suppose the function f(,,") defining the collection of probability
density functions f(-, 8), 8eD, is sufficiently regular. Define the matrix
Mg = {m;} by

?
my; = Eo<5aé;10g S 9)5_9,1°g flx, 0)) (4.1.1)

and suppose that M, is non-singular. Then for an arbitrary unbiased
estimator g(*) of 6, we have

coveg(x)=>My*'  for all 6eD.

PROOF Let g() be an unbiased estimator of 0. Since ¢(-) is unbiased,
Eg{g(x)}=0 - forall b. 4.1.2)
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This means .

fg(é)f (¢,0)dé=60  forall 6
- whence
5 .
a0, fgj(f)f (& 0dE=0;  for all 6.
Under suitable conditions on f and g, we can carry the differenti-

ation with respect to ; operator under the integral sign. There results
the equation' :

d
J g@)g.éf () {9) dé=I1 forall 6

which can be written

JJ(C)——(logf(f, 0)fE0dé=1  forall .

or, in terms of the expectation dperator corresponding to f(-,6),

Eo{g(x)gaé(log fx, 0))} =] for all 8. 4.1.3)

We now use the fact that f(-, 0) is a probability densify to derive
another relationship. Since

Jf(é,ﬂ)dé=1

we can write, under suitable conditions on f,

) o[ o
@f(é, 0)d¢ —%Jf(é, 0)dé=0 for all 6.
Here 0 denotes a column vector of zeros. But then

f —(log f(&,0)f(£,0)déE =0T  for all 6.

T(6/60)/({ 0) denotes the row vector with components (6/(70 )S(&,0). We adhere to this
convention throughout. ,
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aud this equation can be expressed

E,{E‘%log 16, 0)} =0T for all 6. (4.1.4)

Now let us examine the covariance matrix Q, of the composu:c 'b
“random variable [g7(x), 8/06 log f(x,0)]T when x is taken to have

probability density f(;, 6). By (4.1.2) and (4.1.4) this random variable

_ has mean col [6, 0], SO

gx)—0 i
Qp=E, [5%10;; fx, 0)] [(g(x) O)T logf (x, 0)]

4.1.5)
It follows from (4 1.3), (4.1.4) and the definition of M, that

_ coveg I
o[ 1]

Now suppose that M, is non-singular. Since Q, is a covariance matrix,
0 o
0, is non-negative and therefore

[ g_M;1][°°]"g I:I[ 1_1J=covag—M,,‘1 (4.1.6)

M,

is non-negative. It follows that

- M,

coveg(x) > My L. 0

The regularity hypotheses on the function f(-,-) referred to in
Theorem 4.1.1, and those which we tacitly assume concerning the
‘arbitrary’ unbiased estimator g(-), are such as to justify differentiat-
ing f(-,*) with respect to the 6 variable and, where necessary in the
proof, carrying the O-derivative operator under the integral sign.

My s called Fisher's information matrix. We remark that there is an
alternative and often more convenient formula than that given in
Theorém 4.1.1 for the entries m; j» namely

62
- Eo(mlf)g Sflx, 9))-
To check the validity of this formula, note that

o ' d ] o f

FenN
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Integrating over values of x, we obtain

E(-Z togs)=—Ef 210 f——lo 7
"\ @600, >’ )~ a6, OB &

aZf 62 :
Jae,.aa ; dx =578 ; jf dx= Of

The quality of an unbiased estimator can be assessed by comparing
its covariance to the lower bound provided by Theorem 4.1.1. An
unbiased estimate g(*) is said to be efficient if

Eo[(g(») — 0)(g(y) — )1 = M; ! for all 0eD

Notice that if g*(-) is an efficient estimator and g(*) is an unbiased
estimator then for any g-vector ¢, E[c¢"g(y)] = c"0 and we have by
Theorem 4.1.1,

var {c'g(y)} = cE,[(g(») — O)(g(») ~ O)TJc = "M ‘¢
= var {cTg*(y)}. -
It follows from this inequality that if an unbiased estimator g*(-) is
efficient, it provides an estimate cTg*(y) of an arbitrary linear
combination ¢’8 of the components of § with variance which is a
minimum as compared with that provided by other unbiased
estimators.

Consider now the situation when the parameter 6* is to be
estimated on the basis of observations of a sequence of random
variables x,,%,,... For n=1,2,...,let x" denote the composite
random variable x" = col [x,,...,x,] and let §,(-) be an estimate for
0* given x". We say the sequence of estimators {g,(*)} is consistent
if 9,(-)— 6* almost surely.

We now introduce a particularly xmportant kind of estimator.
Take f(-,0),0eD as above. A function (') is 2 maxzmum likelihood
estimator if for every x

f(x, 0(.)()) = n(}ix f(xa 0)-

The maximum may be attained at more than one point, so maximum
likelihood estimators are not necessarily unique. 8(x) has the
interpretation that it is the value of  which maximizes the probability
that the random variable x will be in an infinitesimal region about

since
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the observed value; very roughly, it chooses the value of @ which makes
the observed x ‘as likely as possible’. This interpretation is in itself nio
justification for introducing the maximum likelihood estimator, but
there are in fact excellent reasons for doing so, one of which is the
following result.

Proposition 4.1.2

Suppose as before that the family f(-, 8),8eD satisfies appropriate
regularity conditions and that M, is non-singular for all §. Then any
efficient estimator is a maximum likelihood estimator.

PROOF Let g(*) be an efficient estimator, so that
cov(g(x))= My *.

In view of (4.1.5) and (4.1.6) above this means that for any ¢-vector q,

| Eol:aTUE'“Mo-l]|:a o) =0 ]
L '@Ing(xae))T
1 _
[em-ordroesea ]| o ]e]-o

{

Eb|*=0 4.1.7)

T
b=aT[g(x)——G—M,;I(a—aelogf(x,()))_ :I ;

Now (4.1.7) implies that b=0 a.s. for any 6, and hence, since a is
arbitrary, that

where

L
glx)—0=M;"! (%log f(x, 9)) a.s.,

i.e. that ' '

2 tog f(x, D=0 —0TM,  as.

Now suppose 8(x) is a maximum lkelihood estimator. Then



144 - ' _ SYSTEM IDENTIFICATION

‘_iog f(x,0) isvma‘ximized at 6 = 0(x), so that -
3 .
35.08 S0, 0x)) = (g(x) = 8(x))™ My =0 ‘as.

But this implies that g(x)=0(x), i.c. the efficient estimator g(-)
coincides almost surely with the maximum likelihood estimator 6(-).
. A .

Proposition 4.1.2 is less far-reaching than it seems at first, since
efficient estimators only exist in very special circumstances. The main
justification for the maximum likelihood method lies in its large
sample properties, which we discuss next.

Suppose the situation is the same as before except that we now
observe the values of n independent ‘samples’ of x, i.c. we obscrve
{x{5...,x,} which are independent, each x; having density functxon
[0 (the same 0 for all i). The joint density function is

fn(xh"'5xrn0) = I=_Il f(xbe)'

An estimator 0,(*) of 0 is a'function of all the available data
{X15...,X,}. Since

0? 02
EO[Wlog fn(xl, cees Xy 9):' - nEo[EoiTejlog f(xl.’ 0):|’

the Fisher information matrix for the n-observation case is just
M} =nM, '

where Mo is defined by (4.1.1). Thus for any unbiased estimator
9 (xl 9" n),

cov(B,(x15..., %) Z%Mo'l. (4.1.8)

With increasing n, more accurate estimation of 0 is in principle
possible, as indicated by the decreasing lower bound. As before, g,is
efficient if equality holds in (4.1.8). A more useful concept, however, is
that of asymptotic efficiency. Here we consider a sequence of
estimators 0,,8,,... based on increasing numbers of observations.
The sequence {0} is said to be asymptotically unbiased if Eqf,— 0 as
n— oo for any 0. {6,} is asymptotically efficient if for any 6

ncovy(0,)—>M;, n—oo.
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Consider for example the normal distribution with parameters
6" = (4, v) (the mean and variance respectively) so that

1 1 -
f(x,0) =WCXP< "Z;(x - ﬂ)2>-

The inverse of the Fisher information matrix is

m-1_1fv 0
(M) 1—n(O 202>

and it is easily shown that the maximum likelihood estimators of
and v are the sample mean and variance % and s? respectively, given by

X = X;

1

i

2

§% = 2

™M=

(x;—X)

Sle= x|=

i=1

These statistics have mean and variance as follows (see Kendall and
Stuart (1979))

- 1
EfX)=n  varf%)="o,

n—120?

—1
Eys?) = Y vary(s?) =

n
Thus X is unbiased and efficient while s? is asymptotically unbiased
and efficient. (Note that var,(s?) is less than the Cramér—Rao lower
bound, but this is not a contradiction since the lower bound only
applies to unbiased estimators). It is a remarkable fact that similar
properties apply to sequences of estimators based on independent
samples with any family f(-, 8), 8eD of density functions, subject only

to regularity conditions similar to those assumed earlier. A full -

statement and proof of the following proposition will be found in
Kendall and Stuart (1979).

i
{

Proposition 4.1.3

Let x4, x,...be independent random variables with density function
f(-,6) and let §, be the maximum likelihood estimator for 6 based on
{x1,...,x,}. Then subject to regularity hypotheses, the sequence {f,}




146 . SYSTEM IDENTIFICATION

is consistent, aéymptotically unbiased and efficient. Further, 8, is
asymptotically normally distributed; more precisely the distribution
of \/n(0), — 0) converges to the NO,M; Y distribution as n— oo.

- The last statement means that if F, denotes the distribution
function of the random variable \/n(f,—6) and F the normal
NO,M; Y distribution function then F,(a)— F(a) as n— oo for each ¢
at which F(-) is continuous’. Thus for large n the distribution of 8, is
very close to N(6,(1/n)M, *). This is useful information as it provides
a precise measure of the accuracy of parameter estimates, at least
when the sample size is large.

Our main concern in this chapter is to estimate the parameters of
dynamical systems such as the ARMA model introduced in Chapter
2. It is of course an essential property of the ARMA model that the
successive outputs y,, y, ... are not independent, and analysis of the
large sample behaviour of maximum likelihood estimates presents a
much more delicate problem than the ‘classical’ case considered in
Proposition 4.1.3. Nonetheless it has been shown in a number of
papers listed in the Notes at the end of this chapter that
properties of asymptotic efficiency and normality similar to those of
the classical case continue to hold. We discuss certain of these results in
Section 4.4.

For simplicity we have adopted a framework in this section in
which a family of probability density functions f(-6),0eD, is
specified. We remark that it still makes sense to speak of ‘estimators’,
‘unbiased estimators’, ‘consistent sequences of estimators’, etc., even if
{/(,6),0eD} is replaced by a family of distribution functions.

4.2 Models

In system identification we observe input and output sequences,
{uo,-..,uy_} and {yo,..., yy}, of our system and attempt to ‘fit’ a
model which best represents the data. Invariably the models consi-
dered are parametric, i.e. selection of a parameter -vector feR? fully
specifies a model M(6). Thus the ‘model set’ is {M(6): 0D} where D is
a set of allowable parameter values. Often 6 will simply list the entries
of the matrices involved in the model, but it is possible that these

“l;i the present case F(-) is continuous everywhere, being the distribution function of a
non-degenerate normal distribution. We need the extra generality later.
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matrices could be given as functions of some (say lower-dimensional)
parameter 6. The parameter 6 will usually not be ‘free’; it will be
restricted to maintain, for example, certain stability properties of the
models. ' . :

We shall be primarily concerned in our treatment of system
identification with the (linear, time-invariant) stochastic dynamical
models introduced in Section 2.4. For purposes of algorithm descrip-
tion and analysis, however, we consider also static models (see below)
and the predictor models of Section 2.6.

4.2.1 Static models

The observed p-vector random variable y is taken to satisfy the
equation T

y=X0+e. ‘
Here X is a given deterministic p x g matrix and e is a p-vector
random variable with zero mean. Choice of § specifies the mean value

of y since Ey = X0. This set-up is known as the ‘general linear model’
in the statistics literature. It covers in particular moving-average type

* stochastic dynamical models of the form

Ye= Bz Hu, + w,

where {w,} is a white noise sequence, ie. ARMAX models with
A(z™") = C(z™*) = I, when the entries of the matrix coefficients of the
polynomial B(c) are treated as the unknown parameters (see Example
4.3.1 below and subsequent remarks). '

4.2.2 Stochastic dynamicél models

These are the stochastic dynamical models of Section 2.4 (general
stochastic dynamical models, ARMAX models and stochastic state-
space models), parametrized by the parameter vector 6.

The general stochastic dynamical model equations relating inputs
{u} and outputs {y,} are .

Ve=Poz" Yy + Oz Ve, @.2.1)

Here P,(c), Q4(o) are r x m, r x r, matrices of rational functions in o .
expressible as

Po(@) = [po(0)17'Pola),  Q4la) = [qu(0)]~ ' Dylo).

LM.E.C.C.
BIBLIOTECA
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In these expressions pg(o), g4(6) are polynomials with coefficients real-
valued functions of the parameter 8 which satisfy p,(0) # 0, g40) # 0.
Pyo), Oyo) are polynomials in ¢ with coefficients' matrix-valued
functions of 0. {e,} is an r-vector white-noise sequence. (We refer back
to Section 2.1 for interpretation of the output generated by these
equations, discussion of initial conditions, etc.)

The ARMAX model equations are

Agz™)ye=Bylz™ Vg1 + Colz™Ner.  (422)

In these equations, A,(a), By(o), C4(o) are polynomials in o with
coefficients r x r, ¥ X m, r x r matrix functions of the parameter 6, and
Aqlo) satisfies det 44(0) # 0. {e,} is an r-vector white-noise sequence.

Finally, the stochastic state-space model equations considered are

Xp41 = A(G)xk + B(Q)u;‘ + K(G)ek}
V= H@)x, + e,.

(an innovations representation has been adopted). Here A(6), B(6),
K(9), H(O), aren X n,n X m, n X r, r X n matrix-valued functions of 6.
Again {e,} is an r-vector white-noise sequence.

From the point of view of analysis, general stochastic dynamical
models, ARMAX models and stochastic state-space models are
interchangeable, except for details involved in the specification of

(4.2.3)

initial conditions (see Section 2.4). Notice, however, that a change

_ from one model set description is accompanied by modification of the
definition of the parameter set D in terms of the coefficients in the new
description. A model set expressed, say, in terms of stable space
equations in which one matrix entry ranges over an interval will give
rise to an ARMAX model in which the description of the permissible
coefficients in P and Q is rather complicated. Simplicity of the
parameter constraint set will affect ease of implementation, and
performance, of identification methods. So there may be grounds for
choosing one model set rather than another.

4.2.3 Predictor models

We consider the predictor models of Section 2.6, but we now suppose
‘that the predictor function at time k, f;, depends on a parameter 6.
Thus we take the r-vector output y, to be related to past outputs y, _,,
Vk~1s--+» and past m-vector inputs u,_,,u;_,,..., by the equations
yk=fk(0;yk_l,uk_l)+ek k=0a1,"'

Here y*~! and u*~! denote (as before) col[y,_ 1, Yk—2,.-., Vo] and
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col [ty 1, Uy—5,...,Up] respectively. f,:R? x R x R R, k=0,

1,..., are given deterministic functions of the parameter and past .

outputs and inputs, and {e,} is a sequence of independent, zero-
mean random variables.

We recall that f,(0; y*~*,u* 1) is the conditional expectation of y,

given y*~1, 4*~1, and hence the best ‘one-step-ahead predictor’ in the

mean square sense under the assumption, of course, that M(6) is the

‘true model. A predictor model then is basically a rule (evaluation of

the function f;) for predicting the value of y, given y* =%, "1, As we
have seen, predictor models essentially subsume the stochastic

‘dynamical models of the previous subsection provided the driving

noise vectors are independent. When we reformulate a stochastic
dynamical model as a predictor model we replace it, in effect,
by an algorithm for calculating predictions. A typical identification
procedure involves selection of a parameter value 6 to minimize in
some sense the prediction errors, namely the discrepancy between the
observed output and the prediction of the output supplied by the
algorithm corresponding to parameter value 6. Identification proce-
dures formulated in terms of -predictor models, on which we
concentrate in our study of identification, can be viewed then as
identification procedures for stochastic dynamical models reduced to
a family of algorithms, parametrized by 6, each of which supplies a
predictor.

We have already determined (Section 2.6) the predictors associated
with the stochastic dynamical models considered here. For the
general stochastic dynamical model (4.2.1), the predictor functions f;,
take the form

fk(g;yk_ll,“k_l)=[I“Qo_l(z_l)]J’k'*'Qa_l(z_l)Po(Z—l)uk—thO

(where we assume zero initial data, u, =0, y, =0, k<0, and take
Qy(0) such that Q40) = I). For the ARMAX models (4.2.2)

8y Luk Y =9, k=0,1,...
where j),"is calculated form the recursive equations
Colz Vi =[Colz™ ") — Aelz" )1y + Bolz ™ Y=y i=0,1,...
(We assume zero initial data, y, =0, §, =0, ¢,=0, k<0, and take

Ay(0), Cg(o) to be such that A,4(0) = C,4(0) = I.) For the stochastic state-
space models (4.2.3), .

L@y Lu =9, k=0,1,...

N
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where now
,Ok =H (G)Jek

and %, is calculated from the recursive equations -
2101 = A%+ BOw + KO — HO%), 120

(again we assume zero initial data, £ =0)

4.3 Parameter estimation for static systems

In this section we describe and analyse techniques for identifying a
static system. The analysis suffers from the limitation that it is based
on the hypothesis that the model set considered contains a model
which perfectly describes the system. We cannot expect in practice
that this hypothesis is valid. The analysis is none the less significant
since it is reasonable to suppose that the analysis will give some
indication of the quality of an estimator when the model set, if it does
not actually contain a true description, comes close to doing so.
Let X be a given p x ¢ matrix and let e be a zero-mean p-vector
random variable. Suppose that the p-vector random variable y
satisfies the equation
y=X0*+e 43.1)

for some (unknown) g-vector 6*. Further statistical information
about e may, or may not, be available. In this section we study the
problem of estimating the parameter 6* (and also, possibly, statistical
properties of e), given an observation of y. The problem then is to
choose a model from the model set described by the-equations

y=X0+e

as the parameter 0 ranges over R% when it is known that some
parameter value (0 = 6%) provides a true description of the system.

Of course, parameter estimationfor dynamical systems is of primary
interest in this chapter and, before proceeding, we give an example
illustrating the extent to which consideration of statlc models is
relevant to dynamical systems.

Example 4.3.1
Consider scalar ARMAX models of the form

yk+a1yk—1'+“'+anyk—n TR ] (4-3.2)
=bytly_ 1+ " Dplhy—m+ & k=1,...,N.
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Here we treat yg,..., -1 and ug,...,4_ 4, as initial conditions.

The ¢; are zero-mean random variables. The model parameter is the

vector of coefficients ay,..., @, by,..., by ‘
The equations (4.3.2) can be expressed as a single vector equation

y=X0+e

in which p= N, g=n+m,y=col(y,,...,yn), e=col(ey,...,ey), 0 =

col(ay,...,a,,by,...b,) and

—Yo. .+ TV-nt1 | Yo o Uomsy
X= |70 T p e e (4.3.3)
—YN-1-+« T YN-n i Uy—1 .o Un-m

We have limited ourselves here to treatment of the scalar case. A
reduction of a vector ARMAX model to a static model of the form
(4.3.1) can be performed along similar lines.

It is clear from this example that estimators, procedures for
selection of model order, etc., devised for static models translate into
corresponding estimates, etc.,, for dynamxcal models of the sort
described in Section 2.4.

Notice that the matrix X, given by (4.3.3), depends on the random
variable y,,...,yy and is therefore, in general, random. X is
deterministic, however, in those situations when ay,...,a, can be
taken zero, i.e. when the dynamical system has a' movmg-average
description. Much of the analysis of this section is based on the
assumption that X is a known deterministic matrix (or at least that X
is the realization of a matrix random variable which is independent of
e). It should be borne in mind, then, the analysis is dxrectly relevant
only to rather special dynamical systems.

4.3.1 Least squares estimation of static systems

A natural approach to the problem of estimating' 6* in the model
(4.3.1) is to choose an estimate which minimizes some measure of the
discrepancy, or error, between the observation of y and the value of y

~ which the model predlcts in the absence of disturbances. A particular-

ly appealing'estimate is one which minimizes the sum of squares of the
components of the error, because we can expect it to be analytically
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and comput’atiohally tractable. Such an estimate minimizes

1 2
lel j

0—
2121

~ (the x;; are the components of the matrix X). In vector notation this
function becomes

0-3(y— X0)(y — X0),
A slight refinement of such an estimate is one which minimizes the
function f:
f(0) =4y~ X0)"Q(y — X0), (4.3.4)

in which Q is some symmetric, non-negative matrix. Choice of @ will
depend on our judgement about the relative importance of different
components of the error, or other considerations.

A least squares estimate § of 6* (corresponding to Q) is one - which
achieves the minimum of f defined by (4.3.4).

Notice that, once the matrix Q is fixed, the problem of determining
a least squares estimate is a purely deterministic one and does not
involve statistical information about y.

We observe that the gradient of the function f at 0 is

['(6)=[X"0X0— X"Qy]".

It is now shown that the condition f'(6) =0 fully characterlzes the
least squares estlmate 6.

Proposition 4.3.2

Let Q be an arbitrary symmetric, non-negative p x p matrix. A least
squares estimate of 0* (corresponding to Q) exists. 0is a least squares
estimate if and only if

Xx0=X70y. 43.5)

prooOF For any 6, feR? we can write
10— f@) = —y"0X(0—0) +6TXTQX0 - 0TXTQ XD
=(0- " —X"Qy+ X"0X0]
+30-0TXTQX(0-0), (4.3.6)

after some rearrangement. (The right-hand side of (4.3.6) will be
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recognized as the expansion of f as a finite Taylor series about 8,
namely :

10— f(9) J®)O—8)+40- 9)Tf”(9)(0 - o).

Suppose that 8 satisfies (4.3.5). Since XTQX >0, it follows from
(4.3.6)that £(0) = f(8),forall 6eR% In other words, (4.3.5)is a sufficient
condition for 8 to be a least squares estimator.

Suppose that § does not satisfy (4.3.5); then [ — X*Qy + XT0X0] =
¢ for some non-zero vector ¢ Choose 0 0 — &, for a>0.

From (4.3.6),

fO) ~ fB) = —all&)* +a2ETXTQXE,

It is clear that for a sufficiently small, f(6) — f (9) < 0. So 0 does not
minimize f. We have shown that (4 3.5) is also a necessary condition.

It remains to show that there exists some § satisfying (4.3.5). For
this purpose we introduce the symmetric, non-negative square root of
the matrix Q (see Appendix D). Suppose in contradiction that (4.3. 5)
does not have a solution. This means that the vector XTQy does not lie
in the subspace {XTQX6:0eR9}. Then there exist a g-vector & such
that

ETXTQy(=ETXT(Q%)?y) # 0. @.3.7)
But
ETXTQX0=0, all 0eRe. (4.3.8)

We conclude frém (4.3.7) that QY2X¥ #0. It follows that

FXTOXE = Q12X E(* #0.
This contradicts (4.3.8). Equation (4.3.5) therefore has a solution.
' O

The equations (4.3.5), are called the normal equations for the least

-squares estimate. They have a unique solution

0=(xT0x)"'X"Qy

if and only if XTQX is non-singular. A sufficient cdndition for non-
singularity of XTQX is that Q is positive definite and X has full
column rank. In this case, for arbitrary, non-zero £eR?, X¢ 0. But

then ETXTQXE = (XETQ(XE) > 0. It follows that XTQX is a positive

definite, and therefore a non-singular matrix.
Suppose that Q is positive definite. A least squares estimate § then

~ ~ ~ ~ ~ SN N L TN N N /'\ NN ~ VS N ~ ~~ SN N
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has a geometric interpretation in terms of orthogonal projections.
The function (u, v) - u"Qu defines an inner product on R? which we

write {*, ). The normal equations (4.3.5) may be written in terms of

the inner product
(xpy—X0%9=0, i=1,...,q (4.3.9)

In these equations X;,...,x, are the columns of X. The x; span the

range of X and X4 lles in the range of X. Equations (439) mean
therefore that X0, the value of y predicted by § in the absence of
disturbances, is the orthogonal projection of the observation y onto
the range of X, with respect to {,* ,. '

4.3.2 Statistical properties of least squaresy estimates

We now examine statistical properties of least squares estimates 8 of
the parameter 6* in the system equations under the assumption that e
is a zero-mean, second-order random variable.

The following results establish that least squares estimators are
very good estimators (at least when the weighting matrix Q is suitably
chosen).

Proposition 4.3.3

Suppose that the matrix XTQX is non-singular. Then
El{0(y)} =6, for all 6, (4.3.10)

where E, denotes expectation under the hypothesis that 8 is the ‘true’
parameter value.

PROOF Under the assurnptlons, 8 is unique and is given by
O=(XT0X) ' XTQ(X6 +e).
But e has zero mean so, E{8} = (X"QX)"'X"QX0=0. 0

The proposition asserts that under the conditions which make it
uniquely defined, the least squares estimate is unbiased.
The covariance of the least squares estimate is easily calculated:

Proposition 4.3.4

Suppose that the matrix Q is non-singular. Then
cov {0(y)} = (XTQX) "' XTQROX(XTQX)"!  (4.3.11)
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in which R is the covariance matrix of e.

PROOF O(y) — 0% = (XTQX) ' XTQ(XO* + ) —
= (XT0X)"1XTQe.
Since # is an unbiased estimator, it follows that
cov {f(y)} = ELX"0X] ' XTQee" 0 X(XTQX) ™!
=(XTQX) ' XTQROX(XTQX)™ . O

Given an estimate 0 of the parameter 6* it is natural to estimate the
arbitrary linear combination cT6* of the components of 8*, defined by
the vector c, by the same linear combination of the components of 6,
namely c™8. The procedure yields the estimate §; of 6,, in particular.
The next two results assert that estimates induced in this way by the
least squares estimates for 6* have minimum variance, provided the
weighting matrix is suitably chosen; the variance is minimal com-
pared with that of arbitrary linear unbiased estimates or, in the case
that the disturbance vector e is normally distributed, compared with
arbitrary unbiased estimates.

T heorerﬁ 4.3.5 (Gauss—Markov)

Suppose that
cov {e} =62Z

for some positive number ¢2 and some non-singular p x p matrix X.
Suppose also that X has linearly independent columns. Let 8 be the
least squares estimate for 6* in the system (4.3.1), corresponding to a
choice of weighting matrix

Q==

Then for any g-vector ¢, c™d has minimum varlance in the class of
linear unbiased estimators for ch)* :

PROOF Notice first of all that, under the hypotheses on X and X,
XTE™1X isa non-singular matrix, so we can speak unambiguously of
the least squares estimate. '

The estimator c"d(*) is obviously linear. It is unbiased since
Eoc"0(y) = cTE,A(y) = c0 for all 8, by (4.3.10).

Ws must show then, given () any other linear, unbiased estimator
for c"0,

var {(y)} — var {cT.O\(y)} >0.
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Since the estimator ¥ is linear, there exists a p-vector ¢ such that

Y()=¢Ty,  forally 4.3.12)
and since it is unbiased
' Egp(y)=c"0,  for all 6. (4.3.13)

From (4.3.12) and (4.3.13)
E{E7(X0+¢e)} =c"0, forall 0.
Since e has zero mean,
. X0=c"9, forall6.

This is only possible if

N ETX =T, 4.3.14)
oW,

var {y} = E[¢Ty — cT0*]?
since l//(').iS an unbiased estimator for c'9*,
= E[ETX0* + ETe — ETX0*]2
by (4.3.12)
= E¢Tee™¢ = g7 L,
It follows from Proposition 4.3.4 that
var {Y(y)} — var {c"0(y)} = 2 [E'ZE - €T5E]  (4.3.15)
in which ‘ ‘ | ,
ET=cT(XTE " 1X)"1XTx 1, (4.3.16)
Substitution of (4.3.14) and (4.3.16) into (4.3.15) gives
var {y(y)} — var {c"0(y)} = 6*¢"[= — D]¢
in which ' _
D=X(XTE"1X)"1XT.
We can check, however, by direct expansion that
[Z—-D]=[2~D]"L"[Z - D].
We have shown that
var {()} — var {c"0())} = 62¢[E ~ DI'Z " ![E ~ D]¢.
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This last expression is non-negative, since ™! is a non-negative,

symmetric matrix. We have shown that c"9(y) has minimum variance.

d

If the disturbance vector is normally distributed, then the least .
squares estimator has ‘minimum variance’ over the classt of unbiased

estimators, linear or not, for a suitable choice of weighting matrix.
This is proved by showing that the least squares estimator is efficient.

Theorem 4.3.6

- Suppose that e ~ N(0, 62Z) for some number ¢ and some non-sin-

gular p x p matrix Z. It is assumed that X has linearly independent
columns. Let 0* be the least squares estimate for 6* in the system

* (4.3.1) corresponding to a choice of weighting matrix 0 = £~ !, and let

¥(-) be an arbitrary unbiased estimator (not necessarily linear).
Then for any g-vector c,

var {c0(y)} < var {cﬁf( )}

PROOF Under the hypothesis that 6 is the true parameter value, we
have that y = X0 + ¢, e ~ N(0, 6>X), and consequently the probability
density p(y|6) of y is:

L ex
(2rat)PY(det T)1/2

p(y|6) = p{—%(y—XG)TZ"(y—Xﬁ)}-

‘So

log p(y|6) = — log{(2na?)?*(det X)!/?}
' —(26%)7H(y— X0)TZ " (y — X06)

Fisher’s information matrix M, = — 3%/80*logp(y|6) can now be
calculated:

My=0"3X"27'X)
(see Section 4.1). By theorem 4.1.1,
cov{y} >} (XT= "1 X)L 4.3.17)

However, since the weighting matrix is £~ !, we see from formula

'We are somewhat vague here about the class of comparison estimators; it comprises
those estimators for which the Cramér-Rao lower bound is valid.

Y N o N N N —
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(4.3.11) that |
cov{fp)} =*XTETIX)L (43.18)
We deduce from (4.3.17) and (4.7.18) that |
var (c70(y)) = " cov {B(y) }c < cT cov {¥(») }¢ = var {c"¥(»)},
the desired inequality. - ' [

4.3.3 Estimation of the variance of the noise components

Suppose that the observed random variable y satisfies the static
system equation
’ y=X0*+e

in which e is a p-vector with components uncorrelated, zero-mean

random variables with common variance ¢2. As usual y is a p-vector

random variable, and 6* is a g-vector. It is assumed that X has full

column rank and p>gq. -
Suppose o2 is unknown. A plausible estimate for o2 is

1
;(y—Xﬁ)T(y—XG)
in which 8 is the least squares estimate of 6* given y.

0=(X"X)"1X"y. (4.3.19)

Indeed the expression (4.3.19) is the sample variance of the ¢; under
the assumption that 0 coincides with the true parameter value. The
fact that §is used in the expression introduces a bias into the estimate.
This can however be corrected by a simple scaling:

Proposition 4.3.7

&2 defined by
FP=p-9 'y-XO"y—-Xx0), (4320
in which 8 is given by (4.3.19), is an unbiased estimate of 2.
PROOF By (4.3.19)
0= X0"(y— X0)=(y — X(X"X)" ' XTy)"(y — X(X"X)"'X"y)

= yT(Ip = X(XTX)T XTI, ~ X(XTX) "' X )y
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(a ;, denotes the p x p identity matrix)
=y, — X(XTX)" ' X )y
‘=trace{(I,— X(X"X)"'XT)yyT}
by properties of the trace operator
=trace{(I, — X(X"X) "' XT)(X0* + e)(X 0* + o}

Since the trace operator is linear it commutes ‘with the expectation
operator and so

E[y— X0]"[y — X0]
= trace{(I, — X(X"X)~ 1XT)(XB*H*TXT +a21,)}.
However, (I, — X(XTX) ' X™)(X0*0*TX") =0, so ‘

E[y — X07"[y — X8] = 0 trace {I, — X(X"X)~ ' X}
=g?[p— trace {X(X"X)"'X"}]
=¢?[p—trace {(X"X) "' XTX}]
=o?[p— trace I,]
=o*[p—q].

It is clear from this equatlon that 2 given by 4.3. 20) is an unblased
estimate of o2 O

!

4.3.4 Maximum likelihood estimation for static systems

Suppose again that the observed variable y satisfies the static system
equation
y=X0*+e.
We derive equations satisfied by maximum likelihood estimates of
6* and of the unknown satistics of the disturbance e, when e ~ N(0, Z)

and Z is non-singular,
If 6 were the true parameter value we would have y ~ N (X 6,%Z). The

likelihood function p(y}d,X) is therefore ‘
p(y16, %) = [(2m)? det =]~ exp{—4(y — XO)"E "1 (y — X6)"}.
The log likelihood function is ' '
log p(y|0, 2.) —510g2n— LlogdetE — l( XO)TE Yy — X0).
4.3.21)
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- The maximum likelihood estimates are obtained by maximizing
the log likelihood function over. the unknown parameters following
substitution of the observation in place of the y variable.

" Case 1 (X known)

In this case the maximum likelihood estimate 8 coincides with the

least squares estimate, corresponding to weighting ™%
f=(XTZ71X)"1XTZ 1y,

To see this, we need merely note that @, which maximizes the
expression (4.3.21) for given X and observation y, minimizes the least
squares criterion 6 —3(y — X0)"Z~*(y — X0).

Case 2 (X partially kndwn)

When only partial information about X is available we can expect that
estimation of the unknown parameters and statistics (0* and Z) will
no longer reduce to a least squares problem and numerical methods
will be required. In illustrating the kind of analysis which is possible,
we consider here only the case when X =col{X,,...,Xy} and Z =
diag{A*,...,A*}, in which A* is an unknown non-singular matrix.
When X, = X, ="+ =Xy, this case corresponds to estimating *
and A* in the model '

}-’=X19*+e

when it is known e ~ N(0,A*), given N independent observations
J1s72,..., ¥y Of the vector jy. Here it is possible at least to derive
coupled equations satisfied by estimates 8, A, if they exist and A is
invertible, which have a rather natural form. These express § as the
maximum likelihood estimate of the unknown parameter when the
covariance matrix is taken to be A and they express A as the sample
covariance of e, based on the assumption that the unknown
parameter is : :

N . -1 N .
0=[ 3 X,{A“Xk} 3 X, Ay,
k=1 k=1

. 1 X
A==
Nk:l

(We have partitioned y=col{y,,..., yN} compatibly with

E 4.3.22).
=X ké)(yk -X :@T-

43 PARAMETER ESTIMATION FOR STATIC SYSTEMS 161
col{X,...,Xy}.) Indeed, by equation (4.3.21), (f, A) minimizes

N .
J©O,A)=%NlogdetA+1 Y (3, — X, 0TA™(y, — X,9).
. k=1

The fact that § minimizes the least squares criterion 8 — J(6, A) leads

to the first equation in (4.3.22). The estimates also satisfy
4 ,
a—z.l @,£)=0. (4.3.23)

We can evaluate this partial Jacobian with the help of the following
identities from matrix calculus (see Appendix D.4):

(d/dQ)logdet @ = Q~, on the space of n x n non-singular matrices
Q and, for any vector a,

(d/dQ)a"Q " 'a= — Q" 'aa™@ ™", on the space of n x n non-singular
matrices Q. From (4.3.23) we deduce that ‘

v .
$NAT - %A_l[kzl Ve — X — Xko)T]Anl =0
which implies the second equation in (4.3.22).

Case 3 (Z = ¢?I, 0% unknown)

This is an instance of Case 2 in which the estimates can be determined

analytically. We deduce from (4.3.22) that

f=X"X)"'XTy and &%= 11)(y — XO)T(y — X0).

In view of Proposition 4.3.7, the maximum likelihood estimate of
o in case 3 is biased, though the percentage bias will be small for p
much larger than gq.

4.3.5 Model order selection

Suppose that a dynamical system is described by scalar ARMAX
model equations of the form

yk=b::1uk_1+"'+bquk_q+ek k=1,...,p (4.3.24)

together with initial data u,...,u_,, . Here the e, are zero-mean,

independent gaussian random variables with common variance o2,

- As we have observed (Example 4.3.1), the problem of estimating the

N N\ /\./“

~~ _
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parameters b;,...,b, can be reformulated as that of estimating the
vector parameter 9* in the static model o

y=x6*+e v
given observations of y, when we take y—col(yl, AN S
col(by,...,b,), e=col(ey,...,e,) and .
Up .. Uy
Yo Uy eezeg|
Upoy oo Upoy

We refer to the integer g as the order of the model. So far we have
concerned ourselves with estimating the unknown parameters when
the model order is pre-set. What model order should we adopt when
this is not fixed beforehand? We now study this question.

One obvious procedure is to fix the model order at some large
number. This might seem reasonable since, if q is increased in
equation (4.3.24), the equation still describes the response of the
dynamical system (when the added parameters are set to zero.) -

There are disadvantages in this procedure, however. The models
that result will be unnecessarily complicated. Also, we can expect that
an increase in model order will lead to an increase in the variances of
the significant components of the least squares parameter estimates
and consequently to a reduction in the reliance we can place upon
them. These considerations make desirable more sophisticated
procedures in which the model order is estimated from the
observations.

Henceforth we study the model order selectlon problem only in
relation to the static model (4.3.1). It is assumed that E{e} =0,
cov{e} = ¢, X is a known p x g matrix with linearly independent
columns, p> g and 6* is the vector of parameters to be estimated
from observations of y.

Let an integer d, 0 <d =g, be given. Our problem is that of
deciding, on the basis of observations, when the hypothesis

OF =0 = =0%,,,=0 4.3.25)

* should be rejected.

We shall describe some statistical tests of hypothesis (4.3.25). These
involve the ¥? and F distributions, defined as follows.
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Let k,, k, be positive numbers. A random variable is said to have a
v2(k,) distribution if it can be expressed as a sum of squares of k,
independent random variables each with distribution N(O, 1).

A random variable v is said to have a F(k, ,k,) distribution if it can

be exbr,essed:
_51 /52
k k2

in which s,, s, are independent random variables with distributions
x*(k,¥ and yx?(k,) respectively. ,

It is convenient also to define ¥%(0) to be the distribution of the
degenerate random variable taking value 0, almost surely. ’

Analytical definitions of the distributions can be given, but we shall
find these implicit definitions easier to work with. Percentiles of these
distributions are tabulated in books of statistical tables. Some
representative functions are illustrated in Fig. 4.1.

For large values of k,, if v has an F(k,, k,) distribution, then to
a good approximation k,v has a y*(k,) distribution.

Let  be the least squares estimate of 6*, and let. 8 be the least

squares estimate under hypothesis (4.3.25). § is calculated as
§—col(00, 0,...,0), 0p=(X3Xo) X3y

/

0
{a)
1.0

0.54

0 1 2 3
(b)
Fig. 4.1 (a).Probability density function of x2(k) for k = 4,8; (b) Probability

denstty Junction of F(4, 8)
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in which X, is the p x (g — d) matrix obtained from X by removing the
last d columns.
Define '
S(0) = £"(6)e(6) -(4.3.26)
in which v
g0 =y—X0, OeR.

We refer to a function of the observed data as a statistic. The stati-
stic S(% S(f) measures the increase in the minimum of the least
squares criterion when we decrease the number of parameters from g
to g — d. It is natural to reject hypothesis (4.3.25) if S 9) S(0) is large,
since then a significantly betterfit to the data can be achieved by the
higher-order model. The following proposition brings together
results necessary for formulating a test along these lines.

Proposition 438

Suppose that for some integer d, 0 < d < g, hypothesis (4.3.25) is true.
(In the case d = 0, no restrictions dre placed upon 6*). Let Obe the least
squares estimate of 6%, and let 0 be the least squares estimate under
hypothesis (4.3.25). Let S(0) be defined by (4.3.26). Then 0, S(8),

$(0) — S(0) are independent, and
(627 150) ~ 20 — a), (63~ (S) - S@) Xz(d)

Notice that, when d takes the value 0, the proposmon says that, if
no hypothesis (4.3.25) is imposed, § and S(f) are independent and
(»~*s%0) ~ x*(p — q). We shall make use of this fact when we come
to the calculation of confidence regions.

PROOF We shall deal first of all with the case 0 < d < g. Take once
again X, to be the matrix X in which the last d columns have been
replaced by zero columns.

We observe that, by the nature of least squares estimates,

— X0) is orthogonal to the range of X 4.3.27)
and

-X @ is orthogonal to the range of X,. = (4.3.28)
Properties (4.3.27) and (4.3.28) imply that
X(@—18) is orthogonal to the range of X,, ' (4.3.29)

43 PARAMETER ESTIMATION FOR STATIC SYSTEMS 165

since X(§ — (5) can be expressed as the sum of (y — X 5) and — (y — X0)
and both terms in the sum are orthogonal to the range of X,.
We have, from (4.3.27),

ly— X012 = Iy — X0)+ XO@ = OI>= Iy — X811 + | X(@ - O
This equation can be expressed as
S@)— 8@ = | x@-0)>. ' (4.3.30)
Let b,,...,b, be an orthonormal basis for R? with the properties:

(a) The vectors by,...,b,_, span the range of X,

(b) The vector b;_,441,...,b, are orthogonal to the range of X, and
such that b,,...,b, span the range of X; and,

(¢) The vectors by, y,...,b, arc orthogonal to the range of X.

Such vectors can be chosen since the columns of X are linearly

“independent.

Let B:=(b,:...ib,) and set
v=BTe.

We deduce from the fact that the columns of B form an orthonormal
basis for R?, that :

BT'=B"1, 4.3.31)
Notice also that, smce e~ N(0, a2I),
cov {v} = E[BTeeTB] =g’B'B=o¢ I
and so v ~ N(0, g2]). '
Consider the following decomposition of e:
e=y—X0%=(y—X0)+ X (- 0)+ X0 — 0™
Multiplying through by BT and using (4.3.31), we obtain

v=BTe=B"Yy—XO)+B 'XO-0+B~' Xx@—6%.
4.3.32)

Now the mapping x — B~ !x transforms the coordinates w.r.t. the
standard basis into a coordinates w.r.t. the basis b, ,..., b,. By (4.3.27),
— X0) is orthogonal to b,,...,b, and so

B Yy — X0)e{leRP: &, =+ ¢, =0}
By (4.3.29), X(§ — §) lies in the range of X but is orthogonal to the

A~ N N

~ o~

—~

FE any ~ N

~N N N
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range of X, and so

B“x(ﬁ—é)e{?,‘eR”:fl == g=fy = = ép=0}'
Since X (§ — 6*) lies in the range of X, .
B X0 - 0%)e{¢eRP:E,_yuy =+ = £,=0}.

It follows from these properties, together with (4.3.31) and (4.3.32),
that

B (y—X0)=(0,...,0,0,41,...,0,) (4.3.33)
BTX(O—0)=(0,...,0,05_ g 110,03, 0,...,0)T (4.3.34)
BTX((f—O*)=(vl,...,vq_,,,O,...)T. (4.3.35)

By (4.3.31) and (4.3.34)
s~ S(G)—||X(§ B2 =1B"x(0 - 0)||2 Z, v},

(4.3.36)-

By (4.3.31) and (4.3.33),
SO =ly-X0)* = IB"(y— X2 = i of.  (43.37)
By (4.3.31) and (4.3.35) i
f=0*+(X7X)" lXTX((? 0%) = 6* + (XTX)~ 1XTBBTX(9 6%)
=(X"X)"*X"B(,,...,0,,0..0)T. (4.3.38)

Since the v are mdependent and have common dlstrlbutlon N(0,0?)
we deduce from (4.3.36) and (4.3.37) that

o SB) — SO) ~ 2 and 57 SO~ )
Finally, we note that (4.3.36), (4.3.37) and (4.3.38) imply that S(H) —

| S(6), S(8) and § are independent.

This completes the proof when 0 <d < q. It remains to,conmder
d =0 and d = gq. Obvious modifications to our earlier arguments, in
which we now select vy,...,v, to span the range of X, give the
assertions of the properties in these cases also. O

. The case when &2 is known

The proposition tells us that the statistic a‘TS(«?)—S@] has
the distribution y*d) under hypothesis (4.3.25). Let k, be the
upper a-percentile of the y*(d) distribution, i.e. if x ~ y2(d), the event
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x 2k, has prbbability'a. Then the probability that the event
S — S©) > o2k, ' (4.3.39)

will occur when (4.3. 25) is true, is a.
There is therefore good evidence for rejecting hypothesxs (4.3.25),
if the inequality (4.3.39) holds for some pre-set value of « (0.05, say).’

The case when o is not known

In this case we use the property that

S(é)—sw)/ SO ..o 2 a0
7 |p_g~F4r-a (43.40)

if hypothesis (4.3.25) is true.
Let k, now denote the a-percentzlc for the F(d, p — q) distribution.

The event .
d v-a | 434

has probability a if (4.3.25) is true, and there is good evidence for
rejecting hypothesis (4.3.25) if (4.3.41) holds for some pre-selected
value for o. ”

In typical applications to modelling of dynamical systems, p (Which
is related to the number of data points) will be large and the model
orders considered will be small. Tests based on the property (4.3.40)
suggest a procedure for selecting model order in such situations.

Let S, be the minimum of the least squares criterion over vectors
of parameters of dimension m,n=1,2,... -

Since p is assumed large and g/p small the distribution F(1,p— q)
closely approximates y?(1). We deduce from Proposition 4.3.8 that, if
n is a possible model order,

Sn
(S _Sn+1)/ p+1‘

has approximately the y2(1) distribution.

The 0.05 percentile for y(1) is approximately 4. There are grounds
then for rejecting n as a possible model order, at approximately a
5% rlsk level, if the inequality :

S
8= Spuq >

is satisfied in which the coefficient x .takes value 4.
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B S PR S ——

Fig. 4.2

Consider now the graph of S, against n (see Fig. 4.2). These
observations suggest that an estimate 7 of the model order be chosen
to satisfy

Sio1— 83> 'C:S'p—", 8= S < (4.3.42)
for some pre-set value of x (4, for example).

Before we leave the topic of model order selection, we point out
an interesting interpretation of the inequalities (4.3.42). We can
view.S,, n=1,...,p as a uniform discretization of a continuously
differentiable function g:[0, 1]— R. By this we mean-

g<§>=S,,, n¥1,2,...,p.

p
Now (S,_, — S»/(1/p) is a finite difference approximation to
_d
dx

at ® =#/p. The condition (4.3.42) can be expressed approx1mately
in terms of g:
d
ag(x)
~Klyop=0

T
or

d
dx [log g(x) + kx] Ix=ﬂ/p =0.
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We recogmze this last equation as a necessary condition for the’

function

x—log{g(x)} +Kkx (4.3.43) |

to achieve a minimum at x = #/p. The property that the function .

(4.3.43) achieves its minimum at x = ﬁ/p can be expressed in terms
of S,:A minimizes

n—log{S,} + “n.
, p
Since p is fixed, we can alternatively take 7 to minimize A(n) where

1
A(n) =log {;S,,} + Rn

in which & = k/p.

These formal calculations justify a loose interpretation of # as the
model order minimizing the criterion function A(n) for a pre-set
value of %. The function A(n) is customarily referred to as a criterion
of Akaike type for selection of model order. See Section 4.8 for
further discussion.

4.3.6 Accuracy of estimates
Let the observed vector y satisfy the static system equation
y=X0*+e

in which we assume e ~ N(0, 6I). Suppose that the p x g matrix X
has full column rank, and p>g.
Let  be the least squares estimate of 6* given y:

0=(XTX)"1xTy.

The trustworthiness of the estimated components 8; can be
gauged from an a-confidence region for j; this is an interval I(f),
which depends on the estimate §, and has the property that the
event {f¥el,(f)} occurs with probability a.

We provide a-confidence regions in the cases that g2 is, and is not,
known.

Case 1 (o2 known)

Since the estimate 0 is linear, unbiased and has covariance matrix

o} (X"X)™!, and since e is a vector of jointly normally distributed

N
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random variables, ' | ‘ o '
O~ NG@, aZ(XTX) Y,

It follows that, fori=1,...,q,
0 ~ N(8,, o%c;))
in which {c;;} =(X"X)~'. Since X"X is a positive definite matrix,
the ¢; will all be positive, and
| —6¥)/3/(*ci) ~ N0, 1).

We can use this property to construct-a confidence region. Let k;
be the upper /2 percentile for the distribution N(0, 1). Then

6:— kﬂ\/(azcii)’ 0 + kﬂ\/(azcii))

is a (1 — B) confidence region for 6%, i=1,...,q. This is the case
since the normal density function is symmetric.

Case 2 (02 unknown)

When o? is unknown, a realization of §, /\/ (o%c;) is no longer
available. It is natural in this situation to construct regions from the

. statistic 9,/\/ (6%cy), in which 62 is the unbiased estimate of o?,

¢2=(p—q) 'y X0

provided in Section 4.2. (See Proposition 4.3.7.)

At this stage we must introduce another distribution: given a
positive integer k, a random variable v is sald to have the t(k)
distribution if it can be expressed :

_ d
Jerk)
in which d and e are independent random variables with distributions
N(0,1) and x?(k) respectively. Percentiles for these distributions are

tabulated in books of statistical tables.
Now, fori=1,...,q,

9.-—9,*/ " 9“.-—9:-*/ Iy — X8
\/cii \/(a'zc,-,-) (p—q)o*
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We know that
a-—e.*
Vo
Proposition 4.3.8, applied when d =0, tells us. that 0; is independent
of |y — X0 and

~NQ,1.

1
— lly— X001 ~ x*(p — ).
g

1t follows from these properties and definitions of the ¢-distribution
that

) g, —- 6%
\/ Cii
Let k; be the upper f/2 percentile for the distribution (p — g).

Since the associated probability density function is symmetric, it
follows from (4.3.44) that

6 - kﬂ\/(ézcii)a 0+ kﬂ\/(ézcii)

is a (1 — B) confidence region for 8, i=1,...,q

/ J* ~tp—q). (4.3.44)

4.4 Parameter estimation for dynamical systems

. A great variety of parameter estimation techniques for dynamical

systems have been proposed. Most of ‘these share the following
ingredients:

Observations are available of the r-vector output y,, k=0,1,...,N
and the m-vector input u,, k=0, 1,..., N — 1 of a dynamical system.

A set M of models is specified. The models in M are parametrized
by a g-vector 8, which ranges over a set D. The model in M
corresponding to choice of parameter 8 is denoted by M(6).

A real-valued function Vy of the parameter 8 and of the data
yV, u¥ 1 is also specified. Vy, which is a measure of the discrepancy
between the observed outputs and those predicted by the model on
the basis of earlier inputs and outputs, is called the identification

_criterion.

The parameter estimation problem is that of selecting a model -
from M which best matches the data according to the identification
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criterion. It amounts to finding a parameter value which minimizes
0 Vy(0,y",u" ). Different parameter estimation techniques will

result from changing the specification of M, Vy and choice of

numerical scheme for determining the minimizing value of 6.

4.4.1 Pre(_liction error formulation

A particularly important class of parameter estimation techniques
is formulated in terms of the predictor models of Section 4.2:

=00 u " Y +e,  k=0,1,.... @.4.1)

To emphasize the point that, if the data were realizations of the
processes generated by application of the input to the model (4.4.1)
then fk(f) y" L, u*~') would be the conditional expectation of y,,
given y*~1, u*~1, we adopt the hat notation ‘™, customarily used
to denote estlmates given past outputs and mputs and write

P6) = fil0; y¥ 71, uk ).

We also write &(0) for the error in the prediction of y, provided by
9(0), namely

&(6) = i — 9u(6). (4.4.2)

The sequence {ek(e)} is commonly called the sequence of ‘residuals’
or predlctlon errors’ associated with the model (4.4.1).

It is natural to assess the quality of the model according to the
accuracy of its predictors y,(f), and to choose therefore the identi-
fication criterion to be a function of the prediction errors. A versatile
identification criterion is defined in terms of:

(a) A sequence of functions {/,(-,")} from the space R? x R" to the
space of d x d matrices, and,

(b) A real valued function h(-) with domain the space of d x d
matrices.

The identification criterion is

Va0, 6% ) = Q05" ) 443

in which

On(G; YV, uM 1) =

"MZ

 0;840)). (4.4.4)

2|~

k
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Common choices of identification criterion of this form are:

e R W GLNT s

in which {W,} is a given set of positive definite weighting matrices,
and

G y”, u¥ 1) detl: i 0)el (0):] (4.4.6)

Choice (4.4.5) corresponds to selecting a model to minimize a
weighted sum of squares of the prediction errors, and choice (4.4.6)
to selecting a model by the maximum likelihood method, as we shall
see.

Recall that the predictor model description covers the stochastic
dynamical models of Section 2.4 when the noise vectors are assumed
independent. Let us illustrate compution of the prediction errors
(and hence the identification criterion via (4.4.3) and (4.4.4)), in the
case that (4.4.1) is a reformulation of the ARMAX model equations

Az Yy =Bolz Y-y + Co(z™ ey,  k=0,1,... (4.4.7)

withzeroinitialconditions(y, = 0,u, = 0,¢, = 0,fork < 0). We suppose
that the polynomials A4(c), C4(0) in o are such that 4,(0) = C,(0) =

In these circumstances, as was shown in Section 2.6, the predlctors
Y(0) are given by

PO =U~-Ci' Ady— Ci* By k=0,1,...

The prediction errors &(6) = y, — 9(6) corresponding to (4.4.7) are
therefore

€k(9)=Cé-1Agyk+Cg_lBguk, . k=0, I,...

The prediction errors can be computed then by recursive solution
of the difference equations

Colz™")el0) = Aoz~ ")yi + Bolz ™y, k=0,1,...

with zero initial conditions (g(68) =0, y, =0, u, =0 for k <0).

4.4.2 Least squares parameter estimation

Least squares parameter estimation methods for dynamical systems

are methods in which a model is chosen to minimize a weighted
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sum of squares of the prediction errors, {g]}, defined by
(4.4.2). We seek then a value of 6 which minimizes the identification
criterion Vy:

- 1 X
Vnl(0; yNul )= ngl 8Z(O) Wien(0).

Here the weighting matrices W, are symmetric, positive definite
matrices chosen to reflect the relative 1mportance attached to the
different components of the predlctlon

The least squares method for given weighting matrices admits a
prediction error formulation in which we choose the functions 4 and
l;,...,1y defining the identification criterion

1 N
h <N k; 1(6; sk(B))>
to be
L0,8) =8, siW,  for k=1,2,... and (") = trace {-}.
Consider now scalar ARMAX models of the fofm
Az YW =Byz Yu, +e, k=0,1,.
with zero initial conditions (y, =0, u, =0, k <0). Here -
Az )=14a;z" "+ +a,z"" Bfz Y)=biz '+ +bhz"

and ¢, k=1,2,..., is a sequence of zero-mean independent random,

-variables. The vector 6 of unknown parameters, made up of the

coefficients a,...,a,, by,...,b,, is to be estimated from observations
of y¥, u¥~1. As we have already noted, the prediction errors are

al0)=Aoz™ Wi~ Boz™ Dy, k=0,1,... . (44.8)

The problem of minimizing the identification criterion

VN('s yN’ uN- 1):

Va8 ) i @)

* in which a,,(H) is given by (4.4.8) can be expressed explicitly as that

of minimizing ||y — X8| over 8, where
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y.l
y= :
LJ’N
and
[ =Yo = Y-re=Vemer| Yo UoyelMomay
X = '_‘yl —~Yoreo T Yeut2 i u.l uo-‘--u—,.n-;-z
_—};~—1 —YN-2- '_'yN—niuN—l Uy o UNem

In this case the parameter estimation procedure is equivalent to
application of least squares estimation, as described in Section 4.3,
to the static model -

y=X0+e

obtained from reformulation of the model equations as in
Example 4.3.1. If X has full column rank, the least squares estimate
is given then by

0=(X"X)"1X"y.

4.4.3 Maximum likelihood estimation for dynamical systems

Consider again predictor models:

Y=Ly Lu Y +e 0 k=1,...,N. (4.4.9)

We now permit e,,...,ey to be random variables whose joint
probability density functions are specified functions of the unknown
parameter 0. Assume that the inputs u,,...,uy are independent of
e5,...,ey. Let p(xN,...,xIIH, uV 1) be the joint probability density
function of y¥ given 6 and u¥~! (assumed to exist). Maximum
likelihood estimates. of the unknown parameter are those values of
6 which maximize Vy(-, y",u® 1)

Va0, YN, u¥ =) = p(yn, ..., ¥116, ut-t)

(in which y,,...,yy are observations of the output). _
Let us examine maximum likelihood estimates in more detail
under the following additional assumptions: for k=1,2,...

(a) e, has zero-mean and is normally. distributed with non-singular
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covariance matrlx (we write the covariance matrlx A, (44.10)
and,
(b) e, is independent of ¢, I#k, for I=1,...,N. , 4.4.11)

~ Denote by ple,...,x;1y L u¥"1,0) (or, briefly, p(x,..
X; | ¥/™1)) the probability densny function of y,,...,y; given y’ ‘,

~1, 1<j<k < N.It follows from our assumptions that p(x,|y*~!) -

exxsts for k=1,...,N, and is given by

P(xkly"'l) = [y det A, 1™ 2exp{—3llxi — DlO)I13 1}

in which, as usual, $,0)=fi(6;)* L, u*"!). We have used
the notation “||x|,” for “xTPx”. Bayes’ rule tells us that
Plxy, Xy 11y¥ ~?) also exists and is given by

POy, Xy~ 1 1YV ™2) =pXy|yy-1= xN—I’yN_z)p(xN— Y2
= pOxyl Y Dp(xn -1 1YV "2 (4.4.12)

(when xy_, replaces yy_, in y¥~1).

We deduce from (4.4.12) and repeated application of Bayes’ rule
that p(xN,...,ley"l) exists for j=N—1,...,1 and the likelihood
function p(yy,...,y;|u" "1, 6) is given by

N
PO s W40 = 1 iy 0)
=(2m) """ (det Ay...det A,) 712
1 X _
'exp( 53X nyk—ykw)nik-). |
kfl ] /
The log likelihood function is therefore

1ogp(yys-- s 1 U ™! 9)— ——~2——log2n—~ Z logdet A,

1X : 2
- 512:1 Il e — 2Ol At

Since maximizing the likelihood function is equivalent to minimizing
minus the log likelihood function, we conclude that maximum
likelihood estimates are those values of the parameter § which
minimize the identification criterion :

N N
LO)= ¥, laOl Ao+ X, logdet A(9)
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where once again the &,(6) are the prediction errors. We have added

an argument 0 to A, to emphasize that it too can depend on the

unknown parameter. :
We shall now give further information about maximum likelihood
estimates in three cases.

Case 1 (A, known)

Assume that A, is known and A,>0, k=1,...,N. In this case,
maximum 11kellhood estxmates are values of 6 whnch minimize

V1(9)=— Z ”fik(e)”;\;l- . (4.4.13)
N&=

Case 2 (A, = %%, £ known)

Assume that the distributions have common covariance matrix o2,
in which X is a fixed positive definite matrix and ¢2 is an unknown
positive parameter to be estimated. We can arrange that the vector
of unknown parameters takes the form col(y, ¢?) in which ¥ is a
vector comprising the other unknown parameters. Assume that the
parameter constraint set has the form D x (0, o) for some set D.
In this case maximum likelihood estimates are values of ¥ and o2
which minimize

Vo, 02 = (&2)-1[% S ) ug-l] +logdet{c?E}. (4.4.14)
k=1

Case 3 (A;=2Z,Z unknown)

Let the disturbances have common covariance matrix Z. Suppose
that the unknown parameter vector comprises the components of
% and other unknown parameters assembled to form the vector .
We assume that the parameter constraint set is of the form {(,%):
0eD, >0} for some set D. In this case the maximum likelihood

. estimates are values of (8, ) which minimize

1 N
Vi D)=z X 1) 13-+ + logdet =. (4.4.15)

. The following result tells us that, in each case, the parameter
estimation problem reduces to that of minimizing an identification

~~

~~

-~ N ~ ~ —~ ~ ~

~ N~

N
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criterion of the form

voi(gSumamn) e

for appropriate choices of the functions h(-) and (). In other
words, the problem admits a prediction error formulation.

Proposition 4.4.1

Consider the problem of obtaining maximum likelihood estimates

of the unknown parameters in the model (4.4.9), under the

assumptions (4.4.10) and (4.4.11). Let the special cases 1, 2, and 3 be’

as described above. We have:

Case 1 (A, known) 0 is 2 maximum likelihood estimate if and
only if # minimizes the identification criterion (4.4.16), when we
choose h(-) =trace{-} and [,(0,8) = ec"A;*, k=1,...,N.

Case 2 (A, =0%Z, T known) (i, 62) is a maximum likelihood
estimate if and only if

(a) ¥ minimizes the identification criterion (4.4.16) when we choose
h(-)=trace{-}, L(¥,e)=ee"=~ !, k=1,...,N; and,
(b) ‘

1 X
= mk; le@)lz-1 and 62 #0,

(r is the dimension of the output vector.)
Case 3 (A,=Z,  unknown) (¥, 2) is a maximum likelihood
estimate if and only if

(a) ¥ minimizes the identification criterion (4.4.16) when we choose
h(-y=det{-}, L (y,e)=ec", k=1,...,N, and,
(b) '

b =% i eDer ) and det{£}>0.
k=1 .

PROOF Case 1 In view of the fact that eTAe = trace{eeTA}, the
proposition (in this case) merely restates the property that. @
minimizes the function V; defined by (4.4.13).

Case 2 Since logdet(c’L)=rlogao? +logdetX, we see that
(f, 4%) minimizes V, given by (4.4.14) if and only if , 42 minimizes

. 1
the function (¥,062%)—(c?)"! [ﬁz e () llé—xil +rloga? over
. % X [
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D x (0, o). This last property is equivalent to

() ¥ minimizes q,[_lﬁz le) |[2]; and,
k i
(b) 6* minimizes ¢ —(c?)~! [%Z e ll%—:] +rloga?.

However the function 62— (0%~ !¢ + rlog(s?):(0, 00) = R (for ¢ =0,
r 2 0) has no stationary point if ¢ =0, and a unique stationary point
a2 = ¢/r, at which the function achieves its minimum value, if ¢ > 0.
The proof is completed by applying this result when

c= —-Z lec) 13-+

Case 3 (/,$) minimizes V; given by (4415) if and only if
£ =0 and (¥, 0) minimizes the function

g(¥, Q):= trace{QV(})} — logdet Q
over (,Q)eD x {Q:Q = Q7,0 > 0}. Here

V)= SR ).

These conditions are equivalent to

§ minimizes J(¥): = min{g(y, 0):0 = 0", 0 > 0}

over the subset of D on which J(-) is defined, 4.4.17)
0 mmlmxzes Q—»g(uﬁ Q) over {0:0=0",0 >0} and
£=0!

Let us investigate J(-) introduced in (4.4.17). The domain of J(-)

comprises those ¥ such that the minimum of Q — g(¥, Q) is achieved

over {Q:0=0Q",0 >0}. Fix such a y.
We shall require the following identities from matrix calculus (see

Appendix D.4):

1
aslogdctS S~

on the space of n x n non-singular matrices S, and, gwen anynxn

* matrix D,

0
— =D
35 trace {SD}

on the space of n x n matrices S. Using these identities we deduce
that the stationary points of the function Q — g(,Q)on{Q:0=a",
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Q > 0} are those J which satisfy
v —-Qt=o.

It follows that § = (V(i))~* and V(i}) > Oare necessary conditions for
Q to minimize Q — g(f, Q) over {Q: Q", @ > 0}. Since these necessary

conditions define a unique matrix Q (provided V(f)> 0) we will be able .

toconclude that the matrix (V(§)) ~* actually minimizes Q — g(, Q) on
{0:Q =0T, 0> 0} if we can show that (when V(i) > 0), Q —> g (i}, Q)
achieves a minimum on {Q:Q = Q7, Q > 0}. We prove existence of a
minimizing element. Bearing in mind that an arbitrary symmetric
positive definite matrix can be factored as a product of positive definite
. symmetric matrices (Appendix D.1) we see that it suffices to show that,
given a symmetric positive definite matrix W, the minimization
problem:

minimize F(H):=trace{WHH} — logdet {HH}

: .\ . . (4.4.18)
over symmetric positive definite-matrices H

has a solution.

Let ||, and |-|| denote the trace and spectral matrix norms
respectively, (see Appendix D.2).

By the equivalence of norms, there exists « >0 such that || P||,, >
alfP|l, for all matrices P, of fixed dimension. We shall use the facts
that ||P||? is the maximum eigenvalue of PTP and that, for P, a
non-singular matrix, [P, P| = ||P{ ||~ | P]. '

Take H an arbitrary symmetric r x r matrix. We have

trace{WHH} = trace{W'2HHW/2} :
' = trace {(W'2H)(W'2H)T} = |W12H|2
2 a?|WIPH|? 2 oa?| W2 72| H|2,

Since det{HH} is the product of eigenvalues {1} of HH,
logdet {HH} =log{]]4;} <log|max "
—rloglH%.
It follows from these inequalities that

F(H) 2 a|W™2|2|H|* - rlog| H|2.
We see that

lim F(H)=+o and lim F(H)= + 0.
JH1->0 IH]=o0
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In consequence, there exists 6 >0 such that the infimum of the

minimization problem (4.4.18) is unaltered by addition of the -

constraint: .
i< 1H| <6. -

But the r x r matrices H which are symmetric, positive definite, and
satisly these inequalities form a closed bounded set. The function
F() is continuous and, by Weierstrass’ theorem, achieves its
minimum on this set. Problem (4.4.18) has a solution then.

Summing up, we have shown that, given any yeD, the function
Q= g(h, Q) achieves its minimum on {Q:Q =QT, 0 > 0} if and only
if V() is rion-singular, in which case the minimum is achieved at the
unique point (V(y))~*. It follows that the domain of the function J(*)
of (44.17) is {YeD:V(y) is non-singular} and

J() = trace{I} — log det(V(y))~ ..

Since, however, — logdet(V(y)) ™! = log det V() and the logarithmic
function is monotone, minimization of J is equivalent to mini-
mization of J():=det V(i) over {yeD:V(y)>0}. The infimum
of J is clearly unaltered if we take the domain of J to be to all of
D. 1t follows that conditions (4.4.17) can be expressed in the desired
form:

~  minimizes det (—I:T;Sk(xp)sf(lll))

—JIV; &(0)ef () is non-singular
and

1
£ = T e ).

4.44 Asymptotic distributions of parameter estimates

Consider again selection proceduzes which admit a prediction error
formulation. Here we select 2 model defined by a parameter §, which
minimizes the identification criterion

1 N
60— h(ﬁkgl 16, ek(g)))

Let us examine how we might assess the quality of the estimate Oy.
Recall that, since the outputs are random variables, the estimate

—
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which is some function of the inputs and outputs is also a random
variable. Ideally then we would like to know the probability
distribution of fy.

While the task of calculatmg the probability distribution of Oyisa
formidable one except in highly restrictive circumstances (for example
when the dynamic models can be reformulated as static models and
conditions are satisfied under which the theory.of Section 4.3 is
applicable), we might hope at least to obtain:estimates of the
asymptotic distribution of 8y as N - co. It turns out that this is
possible; parameter estimates supplied by prediction error schemes
have similar properties (notably consistency and asymptotic norm-
ality) to those of maximum likelihood estimates based on independ-
ent samples of a random variable, summarized in Proposition 4.1.3.

Suppose that the limit

N
V(6) = lim h<i Y. EL, sk(f)))> (4.4.19)
. N— o N¢=t .
exists for each 0 and that, for N sufficiently large, the estimates 0y, are

confined to some closed ball B in parameter space such that':

2
;02 P©O)>381  for all GeB. (4.4.20)

Then, provided certain mild conditions are satisfied (we shall be

precise about such conditions in Chapter 5),
Oy—0* as.

where 6* minimizes V() over B. (This follows from Theorem 5.2.1
since the limit (4.4.19) is assumed to exist, and the convexity

hypothesis (4.4.20) ensures the V(0) has at most one minimizer over B).

We can interpret * as a parameter value associated with a. model
which best approximates the system as measured by some kind of
average value of the identification criterion in the limit as N - c0. An
asymptotic analysis of the probability distribution of  is possible if
6* merely provides an approximation of the system (see Ljung and
Caines, 1979). But we examine here the limiting distribution only in
situations where 6% provides a true description of the system in the
following sense:

&,(6%)} is a sequence of zero mean, independent random
k q P
variables with common covariance matrix £,. (4.4.21)

02 02
*—— Vdenotes the matrix { T/}.
20 : 20,
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We focus attention on the least squares identification criterion
1 X .
J(O;N)= N Y. e (O)We0) 4.4.22)
k=1

(here W is a given weighting matrix) and the identification criterion
which results from formulation of maximum likelihood estimation as
a prediction error scheme:

Jo(0;N)= det[ i (9):, (4.4.23)

Proposition 4.4.2

Consider either the identification criterion (4.4.22) or (4.4.23) and let
6* be as above. Let y,(8)(={(y(0));}) be the gradient of the
predictions:

IO

k=1,2,...,and suppose that {,(6*)} is a stationary process. Define

Py(W) = [EY{(0))W(6*)] LBV (6*)WZo W(6%)]
‘[EYE (@)W (6%)]7* (44.24)

and
P, =[EY;(0%)Zg ', (6%)]7 . - (44.25)

Then under certain conditions, described in (Ljung and Caines
(1979)), the distribution of N'/%(@y — ) converges to the N(0,G)
distribution’ as N — co0, where G = P,(w) if the identification criterion
is J,(6; N) and G = P, if the criterion is J,(0; N).

PROOF See Ljung and Caines (1979).

We have seen in Section 4.3 how knowledge of the probability
distribution of the parameter estimate permits us to construct -
confidence regions for the true parameter value. In the same spirit we
can use properties such as those described in Proposition 4.4.2 to
estimate confidence regions here too in a dynamic setting. Of course,
since these estimates of confidence regions are based on the asympto-

¥This mode of convergence is defined following Proposition 4.1.3,
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tic behaviour of @y we can expect them to be.useful only when N is
large.
The expressions (4.4.24) and (4.4.25) for the limiting covariance
matrices P,(W) and P, cannot be evaluated exactly, but we can
* approximate them by related expressions whose values can be
computed. For example we can replace Z, by the estimate 5

1 N
20 = N Z 8k(§N)8g(gN)

and replace the action of the expectation operator by sample averages
about §y. Thus we use in place of P,(W) and P, the matrices P (W)
and P,

Py(W)= QW) 'QWE,W)Q(W) ™!
and
=QE;)™".
Here Q(*) is defined by

N/
05 =5 3, IOIU6)

It is convenient that the gradients of the prediction {,(9y)} are often
available anyway as a byproduct from application of the algorithm
used for numerical minimization of the identification criterion.
Results on the asymptotic distribution of estimates are significant
‘not only as regards error analysis, but have a bearing on experiment
design and questions of identification criterion selection too.
Consider the least squares identification criterion (4.4. 24) We
might ask, what is the best choice of W in the sense that the variances
of linear combinations of components of the estimates are minimized
in the limit as N — co? Here we are helped by the following lemma.

Lemma 4.4.3

Let Z be an n x m'matrix of second order random variables, and
let £ and W be symmetric n x n matrices. Suppose that X, E(ZTWZ)
and E(ZTZ~1Z) are positive definite. Then

(EZ'WZ) NEZ'WEWZ\EZ'WZ)™ > (EZTZ‘. 17)-1,
and equality holds if W=x"1,
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PROOF That equality holds when W =3X"! is obvious. Since T
(and therefore Z_"l) is positive definite, it follows that

E[(@"Z" + b"Z"WE)T~Y(Za + ZWZb)] 2 0

for all n vectors a and b. Now, for arbitrary b, the left hand side is

minimized by a = — (EZTZ 1Z)"Y(EZ™W Z)b. From this choice of a
there results

b'L(EZ"WEWZ)~ (EZ'WZ)(EZ"E™'2)" ‘(EZTWZ)]b >0.

The lemma is proved by setting b = (EZ"WZ)™~ !¢, for arbitrary c. |
' a

It is evident from the lemma and equation (4.4.24) that, for the
least squares identified criterion (4.4.22), greatest accuracy is
achieved, in the sense that the covariance matrix of NY/3(0,, — 6*) is
minimized (with respect to the usual partial ordering of positive
semidefinite matrices) in the limit as N — oo, if the weighting matrix
is chosen to be the inverse of the covariance matrix of the innovations,
Z,. What is more, estimates provided by the identification criterion
(4.4.22), which arises in maximum likelihood estimation and for which
knowledge of X, is not required, have accuracy, in the limit as
N - o0, that of least squares estimates corresponding to a best choice

of weighting matrix. These properties, somewhat akin to the

asymptotic efficiency of maximum likelihood estimates for in-

‘dependent observations, make maximum likelihood estimates very

attractive in dynamical system identification.

We conclude this section by indicating why we can expect the
limiting covariance matrix of the estimate to be as given in
Proposition 4.4.2 in one special case. The case considered is that when
the output is scalar valued, var{eZ(8*)} = ¢2, and the following least
squares identification criterion is adopted:

N
Vi@ =N"* { > 8,3(0)}. (4.4.26)
k=1
For simplicity we take 6 to be scalar valued.

Provided 8 is interior to the parameter constraint set, we have

0
20 VN(gN) =0.

N VamS —

N
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0
By the mean value theorem applied to % Vx(0) then,

0 o 0*
—a—e-VN(H )——0+'aaﬁ

Here yy is a point on the line segment joining 6* and 8. It follows that

NY3(0, — 0%))? = -—a-z—v ~2N iV 0* 2.
(N )) 692 N(yN) ) ae N( )

Va(yn) Oy — 6*):

In view of this equation, and since fy — 8* a.s., it is not implausible .

that N1/2(@y — 6*) should have variance, in the limit as N — o,

[ e V(G*):l Jim NE( V(6% ))2

However, for the identification criterion here considered (4.4.26),

0 im0 |
g =5 )

2 X -
=,m,;[ (0552000

R (ES))

(It is assumed that the operations just carried out are valid). The first

Z E(e£(6*))

term under the summation is zero by assumption (4.4.21) and since

0% -
ng(a*)
is a function of {g;(0*), j < k}. By stationarity then,
52

=z V(6%) = 2BV (6%)

where ¥, is as defined in Proposition 4.4.2. Note also that, for N a

positive integer, _
0 2 0
NE %0 Vy(6*) | =4E Z Z & (0*) % sJ(G*)s,‘(B*)-—wk(f)*)

= 4E(e; (9*))E(¢k(9*)) =403 EW(6%)).

Once again we have appealed to assumptlon (4.4.21) and noted that
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derivatives of &2(6*) are functions of { 40%),j < k}. The variance of
N 1/2(0 — %), in the limit as N — o0, is therefore .

ob/ELY(0%)]

in accordance with Proposition 4.4.2. -

4.5 Off-line identification algorithms

Prediction error parameter estimation techniques involve minimiz-

‘ation of an identification criterion §—J(). In special cases (see

Example 4.3.1) a closed-form solution can be found to this minimiz-
ation problem. For others, typically those involving models with
correlated disturbances, we must resort to numerical search proce-
dures to find a minimizing parameter value.

4.5.1 A modified Newton—Raphson algorithm

Suppose that the identification criterion J is twice continuously
differentiable, and that the parameter values are unconstrained. The
Newton—Raphson algorithm generates a sequence of parameter
values {6%}, given a starting value 6%, by means of the recursion

2 -1
g+ =0<k)—[‘27‘£(90‘>)} o7 _@%).  k=1,2,... (45.1)

/

Here the row vector 0J/00 denotes, as usual, the gradient of J.
02J/06? is the matrix of second partial derivatives {92J/06,00;} (the
Hessian of J). If the Hessian is positive definite at §, a minimizing
value of the parameter, then it is known that

hmsupll()"" ay/ne* -1 —a)? < o

k=~

for any starting value 6° sufficiently close to 8; that is, the
method has local ‘second-order convergence’ properties. A natural
variant on this algorithm which can be expected to perform
satisfactorily even when 6® is not close to a minimizing value is the
following: let J”(6) be an approximation to the Hessian at § which is
symmetric and positive definite. The recursion (4.5.1) is replaced by a
one-dimensional search in an approxxmate ‘Newton- Raphson direc-
tion, namely :

041 = 60—, 709112 00,
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where «, is chosén to minimize

= J[ 6% — a(J(9%)) =t ﬂ(@@)]

~over a=0. Second-order expansion of J about 8% reveals that,
whatever 6, the value of identification criterion is reduced at each
step, provided the gradient

oJ
(g%

is non-zero. Since J"(6™) approximates the Hessian, it is reasonable
to suppose that the method will have the desirable second-order

convergence properties associated with Newton—Raphson algor-

ithms, and that (4.4.2) will rapidly generate a parameter value at
which 8J/98 is small.

This scheme is particularly attractive for prediction error methods
because, in important cases, the derivatives up to second order are
easily calculated and asuitableapproximation to the Hessian naturally
suggests itself, as we now show.

Take the predictor models M(H),BGIR" of Section 4.2,

=00 5u "0 +e,  k=0,1,...

in which the f, are given functions and the e, are zero-mean
independent random variables. We assume that the f, are twice
continuously differentiable in their arguments.

We shall consider identification criteria which arise, respectively, in
least squares and maximum likelihood parameter estimation, namely

J1(0) = trace {WD(6)}
in‘'which W is a given positive definite matrix,"and
: Jo(0) = logdet {D(6)}.
Here
D(6) = .IIV; e(0)er(9), in which
&(0) =y, — fil* "L ut "1, 0). )
Straightforward calculations give the first partial dcrivativas.of Ji:

‘”‘(9) < )f eNOW ‘38" ©) =l
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As for the first partial derivatives of J, we have

aJ,

56—(0) = trace {— [log det D(0)] —(0)}

= trace { 1(9) Z ( 98 (9) +(0) + 8:‘(9)—‘(0)>}

by the matrix calculus identity, Lemma.D.4.4, of Appendix D,
def

— 2 > 0D 1
=¥ .2, HOD T OZE0)
Also,
g, 2[ N o ask x 2%,(60)
ao,.ae,.‘ﬁ[k; 6,07 (9) Z 9)W39 ae}
and '
0%, 2 X o 3 6ak N .
56,36, N %1 36,000 56, @ +" 2, OO ae ae
—Nii ) z(e)D"(e)[ SO 0) + THOT) |
DO 0

‘We have used 'Lemma D.4.2. of Appendix D in calculating

0%J,/00,00;. It is assumed here that D(6) is non-singular. The first and

" second partial derivatives of ¢,(0) which appear in these expressions

can be calculated from the formulae

a“°'k 6fk -1, k=1
and
0%, *fi k=1, k=1
%k _(g)y= ,0
56,66, )= ~ 26,36," )

Suitable approximations J(d) and J%(6) to the Hessians in these cases
are given by

def 0g,

(B)Wae

{‘] (9)}11 N Z ( )




St N NS

St N’

~ N~ N

190 * SYSTEM IDENTIFICATION
and . L . .

V10 =5 5 2

These choices of J{(6) and J3(0) are positive semi-deﬁnite, and can be
made positive definite by addition of a term «l, > 0, if necessary.
Notice that, in replacing the derivatives by their approximations, we
have ignored the terms

88,,

(9)D(9)“ (9)

N 0%
2 & (9>W69 %, ©

k=1

Zln 2z

M=

ODO)1 %

| 36,20,

k

1l

and
7%§§:MDW{NﬁWWF4wU}‘@%m

To justify these approximations, let us suppose that the data isactually
generated by the predictor model when the parameter 6 takes value 6*.
Under mild assumptions on f and the noise {e,}, it is possible to show
that the omitted terms all tend to zero, as N — oo, almost surely, when
0= 0% 1t is reasonable. to assume then that the terms will be small
when N is large and 8% is close to 6*. Proof involves application
of the Ergodic theorem, Theorem 1.1.15 and use of the facts that, for

k=1,2,...,6(0%) = e, whence for | <k, ¢&,(0) is 1ndependent of g(6*),

and for l< k, &(6*) is independent of

G&1 e oy
75,07 and o 20, 35,900

4.5.2 The generalized least squares algorithm

The generalized least squares algorithmis amorespecialized algorithm
for identifying parameters in certain models involving correlated
disturbances. The algorithm is more widely applicable than this, but
for the sake of simplicity, we describe it in connection with the class of

. scalar models

Az YWy, =Bz Y, +¢&, k=0,...,N
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in which the disturbances &, are generated by the equations
F(z™ Y, =e, k=0,...,N

We take zero initial conditions (y,=0,u,=0,&,=0 for k<0)
Here the polynomials A(c), B(¢) and F(o) take the form

A@)=1+a07 '+ +a,0™"

Blo)=byo" 4+ +bo™" .
and

Flo)=1+ fic" + -+ f,o™".
The e, are independent random variables. The coefficients
A1seeeslybyye.bp, f1,..., [, make up the entries of the unknown

vector parameter 8to be identified.
A parameter value is sought which minimizes the least squares

criterion

1 N
N &, 50 4.5.2)

in which the g,(0) are the predlctlon errors correspondmg ‘to the

parameter value 8.
Calculations similar to those performed in connection with the
ARMAX model equations (4.4.7) give the prediction errors &,(0) as

&) = A(z™")F(z™ )y — Bz YF(z™ M. (4.5.3)

The parameter estimation problem is therefore that of minimizing
(4.5.2) over @ when &(0) is given by (4.5.3). '

A minimization scheme is suggested by the observations that, if
either the f; or both a, and b, are fixed, then the prediction errors are
linear functions of the remaining free parameter coefficients, and the
minimization problem over these components can be solved in closed
form.

Ifthe f;are fixed, the prediction errors g (), k = 1, 2,..., are given by

g(0) = A(z Ny, —Bz" Y, k=1,2,..., 4.5.9)

in which the y, and i, are calculated from the data and the f; according
to
_)7,(=F(Z"1)uk,ﬁk=F(Z_1)u'k, k 0 1
On the other hand, if the a; and b; are fixed then .
g@)=Fz™Ng 4.5.5)
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in which the &, are calculated from the data and the a;and b; according
to

&G=A(z" l)yk — Bz~ l)uk

* The closed-form solutions to the problems of minimizing (4.5. 2) when
&(0) is defined by (4.5.4) and j,, %, are known, and when &(0) is defined
by (4.5.5)and the g, are known, are provided by the least squares theory
of Section 4.4 (under the assumption that the normal equatlons in
questlon have a unique solutlon)

It is natural then to minimize the criterion 4.5.2) alternately over
the f;and then over theq, and b;. Thisideais the basis of the generalized
least squares algorithm.

The polynomial Fy(z™") with leading coefficient unity, is chosen
arbitrarily. (A common. choice is Fyo(z~%) = 1). Sequences of poly-
nomials {F0)}, {Af0)}, {(B{o)} with coefficients the unknown
parameters, are then generated recursively as follows. Forj=1,2,...,

() The polynomials 4{c) and B (o) are chosen to have coefficients
which minimize (4.5.2) where theg,(0) are given by(4.5.4) and where

Ie=F;j 1@ Yyt =F;_(z" VY, k=0
yk=09 12,‘=0 k<0

and,’ _
(b) Thepolynomial F (o)is chosen to have coefficients which minimize
(4.5.2), where ¢,(0) is now given by (4.5.5) and where

§k =AJ'(Z-I)yk—Bj(Z-1)uk, kZO
§ =0, - ' k<O.

The recursion is terminated when the change.in parameter values
between iterations becomes insignificant; the coefficients of the current
Af0), B{o), F {0) provide the parameter estimate.

4.6 Algorithms for on-line parameter estimation

In many applications, parameter estimates are required on-line, in
the sense that - we must obtain estimates based on data available at
time N before new data comes in at time N + 1. This is the-case, for
example, when adaptive control schemes are implemented, because
then the control strategy to be applied at a particular time depends
on the parameter estimates at that time.
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The parameter estimation algorithms of Section 4.5 are often

infeasible for such applications because the calculations involved.

cannot be completed sufficiently quickly. The algorithms we now

consider are devised to overcome this difficulty; they update the
parameter estimates to take account of new data in a computation-

saving manner. For the sake of simplicity, attention is restricted to
algorithms for single input, single output systems.

4.6.1 The recursive least squares algorithm
We consider scalar ARMAX models of the form
Vet @Ye-at+ v +aoy=biu_ i+ + by, +e,
k=0,1,.
with zero initial conditions (x=0,u, =0, for k <0).
Here e, e,,... are zero-mean independent random variables. The
vector of unknown parameters 6 is [a;,.. ,a,,,bl, N

‘Let @y be the estimate based on data N, ul- r up to time N
obtamed by minimizing the least squares criterion

Vi) == Z & (0)

in which the &(6) are the predxctlon errors. These, we recall, are
obtained from the equation

gl)=yc+ayy_ +- + QYk-n— bty — " = by,
‘ k=1,2,...
We have seen in Section 4.4 that fy is given by _
Oy =(XTX) X1 Y,. ' 4.6.1)
Here
Xy =col[x],...,xx], Yu=[yy..., yn]"
and

— T
X =[—=Yk=15 = Vi=25--> V- U= U250 ey U]

(It is assumed that X} X is non-singular).

At time N+ 1, yy,, and uy (and hence Xy+1) become known.
The least squares estimate which takes account of this new inform-
ation is

9N+1 =(X11\;+1XN+1)_1X1TV+1 YN+1-

~~ —_

.

™ o ~ e ~

-~



g <,

S ~

194 : SYSTEM IDENTIFICATION

We shall show that 8y, , can be determmed from G"N, uN and
Yy +1 given the matrix Py,
Py=(XFXy)7Y

by means of simple calculations. .
But we first take note of a matrix identity known as the matrix
inversion lemma.

Lemma 4.6.1

Let A be an n x n matrix and let b, ¢ be n-vectors. Suppose that 4
and A + bcT are non-singular and that 1+ ¢4~ 'b #0, then

(A+bc) t=A"1—(1+cTA™B) 1A~ bcTA~ 1,

PROOF We have merely to check that
(A7 =1 +cTA™b) 1 A7 bc" A7 1)(A + bcT)
is the identity matrix. But this matrix is expressible as
I+ A7 — (1 —cTA7 )" A~ bcT + A th(cTA ™ b))
=I+A " —(1+cTA7 D) (1 +cTA™b)A " bcT =1 a
Bearing in mind our assumption that X%X is non-singular, we
readily confirm that the hypotheses are satisfied when we set
A=X3Xyand b=c=x,,,. It follows that
Pyiy —(X'zl\‘r+1XN+1)_ =((XyXn) + xN+1xN+1)
=[0I — (1 +x} 41 PyxXn+1) " Pyxy+ 1‘xN-{-1]PN'
We deduce that- o
One1=Pys1 XN 1Yn+1 =Py (XTyy+ Xy+1YN+1)
=[I—(1 4+ x§4 Pyxy+ )7 PyXy s 1 Xy 4]
Py(XNYy + Xy 1Vn1)
=PyXyYy+(1+ xN+1PNxN+1) T+ xN+1PNxN+ )
PNxN-i-lyN-v_-rl — PyXys1 Xy 1 Py X T Yy
— PyXy s 1XN+ 1 PNXy 41 VN +1] .
=Py X3 Yy + (1 4+ X% 4 1 PyXys1)” tPyXy sy
‘Dver— Xﬁ+ 1PNX1IIYN]
=0y+(1 +x}lHPNxNH)_lPNxNHD’NH —xﬁngnl

by Lemma 4.6.1.
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These relationships can be expressed : -
s 9N+1 = GN + Ky+18n+ 1(§N) (4-6;2)
in which gy, ;(Oy) is thé prediction error associated with Oy
en+1(0n) = Yyne1 — XN+ 19N (4.6.3)
and '
Ky+y=(1 +x§+1PNxN)-1PNxN+1» (4.6.4)

together with

Pypr=[I—(1+ X} PyXys1) " "PyXns1Xy+11Py- . (46.5)

Equatlons (4.6.2)-(4.6.5) determine the least squares estimate
Oy, given data up to time N + 1, as a function of 0y the least
squares estimate given data up to time N, the new data yy.y, Uy
and the matrix Py, and generate the matrix Py, in preparation for
the next updating of the parameter estimate. These equations define
the recursive least squares algorzthm The starting value for the
recursion (4.6.5) is Py = (X§X,)~'. We see that Py is updated by
means of a Riccati equation.

Each step of the algorithm involves only matrlx multiplication;
inversion of the matrix Py, required for the corresponding
non-recursive algorithm, is avoided.

We see that the least squares procedure for ARMAX models with
uncorrelated disturbances can be expressed in a manner suitable for
on-line use. The on-line algorithm gives the same sequence of
estimates as we would obtain by applying the procedure each time
new data comes in. Off-line parameter estimation algorithms for
models which permit correlated disturbances can often be adapted
to give on-line algorithms too, provided certain approx1matxons are
made. A typical on-line algorithm which arises in this way has. the
following characteristics: the estimate 0y based on data up to time
N is used as an initial value for one iteration of the associated off-line
algorithm based on data up to time N, and approximations are
introduced by means of which the gradients of the identification
criterion at time N + 1, and other useful variables, can be simply
calculated from the gradients of the identification criterion at-time
N. It is assumed that, although the approximations will result in
poorer estimates for each N, their effect will become small for large
N. A number of algorithms of this kind are now described.
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4.6.2 A recursive Newton—Raphson algorithm -

We recall the modified Newton—Raphson algorithm of Section 4.5
as applied to scalar predictor models when a least-squares identi-
fication criterion

1,
IN6) =3 3. ek(6)
is edopted. Here the ¢,(6) are the prediction errors
sk(e)=yk—fk(yk_liuk_1’9), k=1)2,-“$N (46-6)

associated with the model M(6).
Given data y", 4! and an estimate, 0, the algorithm supplies
a revised estimate, 6,,.,, according to the rule

_ BJT
Onew = o1a — 0 H N(gold) ETR (eold) (4.6.7)

Here

aJN(O)

the gradient of Jy with respect to 6, is

oJ 2 X '
70O~ 2 wOnO).

In this expression the row vectors {wk(e)} are defined by the
equations
2&

V) = — =204 Lu* 1,0, k=1,...,.N. (468)

Hy(0), an approximation to the Hessian of Jy at 0, is given by‘

2 N
HyO) =5 Z Vi (0)y(6)

and a is a sultable positive number. (It is assumed that Hm, given
by (4.6.7) will lie in the parameter constraint set.)

Suppose that a parameter estimate 6; has been calculated on the
basis of data yj;,u;_, forj=1,...,N— 1. Further data yy,uy_, now
becomes available. Formula (4.6.7) suggests that we choose a new
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estimate 6y to be _
- aJ - :
Oy=0y_1 —ayHy(Oy-,) 1 2 (oN " (4.6.9)

Here {ay} is a suitable sequence of positive numbers.

This expression must be approximated if it is to be of use for
on-line calculations: One characteristic which makes it unsuitable
is that it involves the prediction errors, the &(6y-,), and their
gradients the (6 ;). These processes are obtained by solving the
equations (4.6.6) and (4.6.8) all of which depend on 6, _, and, except
in special cases, knowledge of prediction errors and their gradients
for previously considered parameter values does not simplify the
calculations. Such simplification is achieved, however, if elOx-1)
and ¢, (Oy-,), for k=1,...,N, are approximated by the vectors,
written ¢, and y,, which result when, for k=1,2,...,0y_, is replaced
by the currently available estimates 0,_, in both of the recursive
equations (4.6.6), (4.6.8). The column vectors {g,} and row vectors
{¢,} are then defined by

a=Y— L0 LU0, k=1,2,... (46.10)
6fk

and

Y= (y" Luktle_), k=1,2,... 4.6.11)

Introduction of {1//k} provides us with a convenient new approxi-
mation, 2Ry, to the Hessian, where

=“ Z '/’k‘//k

Notice that application of the matrix inversion lemma (Lemma 4.6.1)

-as in the derivation of the recursive least squares algorithm, results

in recursive equations for Py:=(NRy)™?, namely
Py=[I—(1+yyPy_¥0) " Py (Yi¥nIPy-,.
Consider now approximation of the gradient
6.1 ’
- o On-1)-
If 6 _, actually minimized, Jy_, then we would have

f7J~ 1

L On-1) =0

~—~ o~ ~ N

N

— N PN A~

N T
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and it would follow that

oJ 2 X Vo
N(ON 1)—N Z, &0 - Wi(On-1)
2

= EN(BN 1)'//N(9N 1)

In view of this, even if 8y , is not minimizing, (2/N)3N(9N l)ng(GN D)
is a natural choice of approximation for

0JN
(—)0 (GN l)
Furthermore (2/N)ey(0y- 1 Wn(By—,) itself can be approximated

by (2/N)eyiy.
These approximations substituted in place of Hy(6)- ) and

aJ
5 o On-1)

in (4.6.9) lead to the updahng formula
On =6n-1 — (an/N)Ry 'Yryey.
Expressed in terms of Py, the formula becomes
Oy=0y—) —onPyley (4.6.12)

in which, we recall,
Py=[I—(1+YxPy_1¥%) " 'Py_ Y ¥nIPy-1. 4.6.13)

Equations (4.6.10)—(4.6.13) define the recursive 'Newton——Raphson
algorithm. Solution of the recursive equations requires a suitable
starting value Py, a positive definite symmetric matrix, and an initial
estimate 6, of the vector parameter.

For {a;}, Po and 8, appropriately chosen, and for the models
considered in the derivation of the recursive least squares algorithm,
the recursive Newton—Raphson algorithm is in fact the same as the
recursive least squares algorithm. In this case the approximations

“coincide with the true values of the variables concerned.

4.6.3 The recursive generalized least squares algorithm

Consider now scalar stochastic dynamical models

Az Ny = Blz™ Yy + &, A
e

 with zero initial data (y, =0, u, =0, £ =0, for k<0).
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Here {¢,} is a sequence of independent, zero-mean random
variables. The polynomials A(¢), B(¢) and F(o) are of the form" .-

‘Al0)=14a,0+ - +a,o",
B(o)=by0+ -+ + b,a",
Flo)=1+ fio+ "+ f,0"

We take ay,...,a4, byy..., by f15-.-> fn as the unknown parameters.
For convenience we divide them up to form two vector parameters
!p:(al""’ambl""’bn)T and y =(f19“'9fn)T' _

Let us recall the generalized least squares algorithm for de-
termination of estimates given data y¥,u¥ ! (see Section 4.5). The
underlying idea is that, if either  or y is fixed then the value of the
other parameter, y or w which minimizes the mean square of the
residuals

JN(wa 'y) = '1\7 =Zl gz(lp’ 'y)

can be obtained by solution of the normal equations for a simple
least squares problem involving uncorrelated disturbances; after
Jj iterations of the algorithm, when estimates y; y; have been
determined, the next iteration yields estimates ;. 1, ;4 , Where /.,
minimizes ¥ —Jy(,7;) and y;,; minimizes y = Jy(;4 1, 7).

One way in which the algorithm can be modified for on-line use
is to couple it with the recursive least squares algorithm and to
introduce certain approximations. Suppose that estimates Yy, vy
based on data y¥, u¥ ! are available and new data yy.,, uy comes
in. One iteration of the generalized least squares algorithm, applied
with ¥y, yy as initial values, gives estimates i, 7 which minimize
Vo Jye 1 vn), ¥ In 1 (0, 7). In order to apply the recursive least
squares algorithm to determine VJ, ¥ we require the solution of two
Riccati equations. These equations, determined at each step by the
most recent estimates yy, Y of the parameters y and i must be solved
over the time interval 1 to N+ 1. The computational burden of
updating the parameters is reduced if we take as new estimates /.,
Yn+1, approximations to \, 7, instead of i, 7 themselves, calculated
from solutions to two approximating Riccati equations, determined
at each time step j, not by the most recent parameter estimates yy,
¥n+1, but by the estimates y;, ;. available at time j; in order to
calculate the parameter estimates Yy ., Yy +1 We need only advance
the solutions to the approximating Riccati equations by one step,
since the solutions at time N are available from calculation of i/, yy.
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~.'The recursive generalized least squares algorithm updates esti-
mates in this way. A more detailed description of the algorithm is
as follows: Vectors ¥, §, and positive definite matrices Po, Q, are
supplied as starting values. Yy, fx» Py, Qn» N=1,2,... are then
~calculated by the formulae

Unet=¥n + Kns 1On+108) = X4 10)
Kyp1=(1+ X511 PyXyss) "PyxXyeg
Pyyy=[I-(1 +x;+1PNxN+1)—1PNxN+1x§+1]PN
in which
Y0n) = Fplz" Yy, k=N-n+1,...,N+1
w(Py)=Fyz Y, k=N-—n+1,... ,N+1
XN+1= [_'yN(')?N)) = In=1PN)s- o5 = Yn—ns1(Pa)s
UN(IN); s Uy —n s 1 (FN) 1T
and Fy(o) is the polynomial with coefficients entries of Py together
with
Pne1="Fn+ Ly (y+ 1'p,1v+ )= Che17n)
Ly+1 =1+ &8+ 10nn+1) " "Onlnes
Onir =TI —(1+ &N+ 1 Onna 1) Onlna 1 &R+ 110
in which '
MWn+1) = Ay 1" )W — By s(z™ k=N-n+1,...,N+1
Sver=[— ’7N('»DN+ theves = MN-n+ 1(‘;N+1)]T

and ANH(a),' By, (o) are the polynomials with coefficients
entries of Yy ;.

4,64 The extended matrix algorithm

This is another algorithm which permits ‘correlated disturbances’.
We describe the form it takes for scalar ARMAX models:

Az Yy, =Bz Yu + Cz"Ye,, k=0,1,...

with zero initial data (y, =0, u, = 0, ¢, = 0, for k <0).
Here ¢, is a sequence of zero-mean, independent random variables.
The polynomials A(s), B(s) and C(o) are of the form:
Alo)=1+a6+ - +a,6", - Blo)=bo+ - +b,0",
Clo)=1+co4 - +c,0" ' :
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and the coefficients a,,...,qa,, by,...,b,, cy,...,c, make up the vector
8 of unknown parameters

Suppose that at time k we had knowledge of past dlsturbances

e;,j <k. Then we could write thé system equations

Ve=xi0+e, (4.6.14)

in which

X = (= Yimtorees = Vimm Uem 13+ s e €k 12+ €= )
was a known vector. Past disturbances merely have the role of
additional inputs to the system in this hypothetical situation, and

the least squares parameter estimation problem takes a form to
which the recursive least squares algorithm is apphcable

Of course past disturbances are not known and it is therefore.

necessary to estimate them. An estimate £, of the disturbance e,
based on past parameter estimates 9 j <k, and data available up
to time k together with an estimate )2,‘ of the regression vector x,
are easily obtained by solving the recursive equations

111
and

. A A T .
ﬁj=(—yj—1""’ —yj_,,,uj_l,...,uj_,,,sj_l,...,sj_,,) J= 1,2,...

The extended matrix algorithm is the algorithm which results from
applying the recursive least squares algonthm for the model equation
{4.6.14) when 2, replaces x,.

A vector §, and a positive definite, symmetric matrix P, is
supplied. 8y, Py, N =1,2,... are then calculated according to the
formulae

Ons1=0y+ Ky, 1bysy
Kywr=(1+x54 PyXys1) ' PyXysy
Pyiy =0 =+ 25+ 1Pytys1)” ' Pyiys 1X%+11Py
in which '
b=y~ 20ysy, k=N—-n+1,...,N+1
and
')eN+1 =(—yN’-~-, —yN—n+1,uNs~"auN-n-f-l’éN,-'-,éN—,H-l)T-

4.7 Bias arising from correlated disturbances

It is a straightforward matter to apply maximum likelihood esti-
mation methods (for Gaussian disturbances) or least squares methods

.M. E. C.C.
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when the models considered are described by vector difference
equations:

Az Yy = Bz™ Vt— 1 + Wi

when the coefficient matrices of the polynomials A(¢) and B(g) to
be estimated are unconstrained and when the disturbance sequence
{w,} is zero-mean uncorrelated; as we have seen, the identification
problem reduces to minimization of a quadratic functional, and it
can therefore be solved in closed form. When the disturbances {w,}
are not uncorrelated but are modelled, say, by

’ Wk = C(Z— 1)ek

in which {e,} is a sequence of uncorrelated random variables and

the coefficient matrices of the polynomial C(c) are to be estimated, .

then the identification procedures give rise to minimization problems

involving non-quadratic objective functionals, and for this reason

their implementation is a much more formidable task.

In the circumstances one might be tempted to estimate parameters
under the hypothesis that the disturbances were uncorrelated, even
if there were reason to doubt the hypothesis. However, this is not
advisable because we can expect that disturbance correlation will

. -give rise to biased estimates. The following simple example illustrates

the point.
Suppose that a dynamical system with scalar input and output is

-described by

Ve = V-1 + Wy keZ - . 4.7.1)
and that the dlsturbances w, are generated by
w,=¢e,+ce._,, kez. - 4.7.2)

Here {e} is a sequence of zero-mean uncorrelated random

variables with uniformly bounded fourth-order moments. a and ¢

are given real numbers and |a] < 1. We assume that the variance

of e,, which we write R_(0), is posxtlve and does not depend on k
The least squares estimate dy of a, given data for times k = 1,.

and calculated without regard to the correlation of the dlsturbances

| QLA S/ X R
ﬁN=<R{"kZka—1) <Nkz,1)’kJ’k—1)-
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Now it is not difficult to show that, under our assumptions on {e;},
there exist constants ¢ > 0, 1&(0, 1) such that for d, taken as either
VE_1 OF ¥Yy—1, k=1,2,..., we have :

cov{d,d s} <cA*  fort,s=0.

It follows from the ergodic theorem (Theorein 1.1.15) that

1 X .
Nk; Vi-1—=R,(0)  as

and

1 N

~ Z YiVe-1=> Ry(1) a.s.

N =y
where .

Ryy(o) = Eyl%— 1 and Ryy(l) = Eykyk— 1°

The number R,,(0) is positive. We deduce that, ass,, dy is defined
for all N sufficiently large and - _
R,,(1)
R,\0)

The asymptotic value of the estimate of a is now compared with
the true value. From (4.7.1) and (4.7.2),

YiVi—1=aVe-1 + (& + cee—1)Vi-1> keZ

ay— as N— o0, a.s. ﬁ(4.7.3)

and .
Yier = aYy— 18, + (e, + ey 1)ex, kez.

Taking expectations and notmg that e, is uncorrelated W1th €1
and y,_, we conclude that

}’.V(l) = aRyy(O) + CR_ve(O)
and R,(0)=R,(0) where R, (0)=E{ye,}. It follows from these

equations and (4.7.3) that

R..0)
R,(1)’

We see that an asymptotic bias is present of ¢R,(0)/R,,(1). This will
be zero onmly if ¢ is zero, that is, only if the disturbances are
uncorrelated. : '

One situation in which we can disregard correlation of the
disturbances'and still obtain unbiased estimates is when the system

ay—a+c as N—- a.s.
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and model equations involve no autoregressive terms, or in other
words take the form

Yo =B(z" u + w,

-Least squares estimates of the matrix coefficients of B(s) will be
unbiased even if {w,} is a correlated sequence. Indeed, the analysis
of least squares estimation for static models provided in Section 4.3
is applicable (see Example 4.3.1) and this establishes that the
estimates are unbiased even with a finite number N of data points
(see Proposition 4.3.2). We can expect though that the estimates (for
each N) will have larger variance when correlation of the disturbances
is disregarded than when allowance is made for it in the estimation
scheme.

4.8 Three-stage least squares and order determination for -
scalar ARMAX models

This section concerns parameter estimation for scalar ARMAX
systems )

A(z™ Yy, = B(z™ Yu, + Cz " e, 4.8.1)

in which {e,} is a normal white noise sequence with variance o2

We have seen above that maximum likelihood estimation of the

parameters A, B, C, ¢* is in general a nonlinear minimization
problem but that if C(z"!)=1 then it reduces to- least squares
estimation of 4 and B which, computationally, is a very much simpler
task. A similar reduction applies if C(z™!) is any known stable
polynomial. To see this, write (4.8.1) as

Az"Y) - BizTY)
k=T
Cz™H)™" Cz7)
- and define filtered sequences j, #, as follows
Cz™ )=
C(Z_ l)ﬁk = uk.

U+ ek (4.8.2)

4.8.3)
Then j,, 4, satisfy
A(Z 1))’k = B(z™ )i, + ¢

and we can estimate 4, B by least squares, as before but using the
filtered data (j,, %, in place of the original data (y,, ). .
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When C(z~?) is unknown it is natural to consider replacing the

nonlinear maximization of the likelihood by a sequence of least

squares operations in which the data is filtered as in (4.8.3) but with
the ‘true’ C replaced by some estimate. This, indeed, is the idea

behind the Generalized Least Squares algorithm described in -

Section 4.5. Another algorithm along the same lines is the so-called
three-stage least squares algorithm, described as follows. It is
assumed that a data sequence {y,,u;,k=1,2,...,N} is given. The
degrees of the polynomials A(z™?), B(z™?!), C(z~*) and an integer p
(p =10 is a typical value in applications) are pre-specified.

Three-stage least squares algorithm (Mayne and Firoozan (1982))
(a) Estimate the parameters in the model
AT =B
by least squares. Here

Az ) =1+az" + - +a,z?

Bz =Po+ Pz + - +Bz7"
(b) Form the residual sequence

b=z )y — Bz VY, 4.8.4)

where &2, % are formed from the parameter estimates of part (a).
(c) Estimate the parameters in the model

A= Bz Yy + Cz ™18, (4.8.5)

by least squares. Denote the estimates 4,, 8,, C,.
(d) Filter the data through C,(z™!), giving filtered data V> Uiy
CI(Z NPk = W
Cilz™ ity = uy

Ciz™ Vg, =&,

(e) Re-estimate the parameters in (4.8.5) replacing y,, u, & by

P @ & This gives the final estimates 4,, B,,

As its name suggests, the algorithm involves just three least squares
estimations, in contrast to the generalized least squares algorithm
where filtering and least squares estimation are repeated until some
criterion is satisfied.
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Steps (a)-(c) of the algorithm are clearly motivated as follows:
denote &/, = A/C and %, = B/C. Then (4.8.2) becomes

L o2y, = Bolz™ Yy + €.

This gets rid of the unwanted C(z™1), but &7, @6 are now infinite-
degree polynomials. We therefore truncate them to polynomials &7,
2 of pth degree where p is ‘large’. The residuals &, given by (4.8.4)
then approximate the noise sequence e,, enabling us to estimate 4, B
and C by least squares. For the final steps (d) and (e) we behave as
if C, were the ‘true’ value, filtering the data to remove noise
correlatlon

The three stage least squares algorithm is justified, apart from the
above motivation, by its large sample behaviour in case the data is
actually generated by an ARMAX system (4.8.1) with known order
and constant but unknown parameters Aq, Bo, Co.

Consider first the no-input case in which the data {y,,...,yy}
is generated by the ARMA system

Ao(z— l)yk = Co(z_ l)ek. (4.8.6)
It is assumed that A, and C, have no common factors and that the

zeros of o — Ag(o) and o — Cqy(o) all lie outside the closed unit disc.
The model set is the set of ARMA models

Az Yy = C(Z Ve
where
A(z'l) =1+az7 '+ +az™"
Cz™lY=1+ciz 4+ +cz7},
with parameter vector 67 =(a,,...,a,Cq,...,C) The parameter
vector correspondlng to the true system A,, C0 is denoted 8,.

“For a given data set the parameter estimate § given by the 3-stage
least squares algorithm (i.e. containing the coefficients of the
estimated polynomials A,,C,) depends both on the length N of
the data sequence and the degree p of the polynomial 2/(z~') used
in step (a). We write it O(N,p). Mayne and Firoozan (1982)
demonstrate the following large sample properties.

Proposition 4.8.1

* Under the conditions stated above:

(a) For each p there is a vector 6(p) such that
I&im O(N,p)=0(p) as.
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(b) lim 6(p) = 0,
p— o

The resuit says that for any fixed p the parameter estimates may be
asymptotically biased (6(p) # 0,) but the bias 6(p) — 8, can be made
arbitrarily small by choosing p sufficiently. large. The proof of
Proposition 4.8.1 is complicated and we must refer the reader to the
original paper for this. The paper also contains important results
relating to the large-sample distribution of §(N, p) which show that
this estimator is asymptotically efficient, i.e. it has’ properties similar
to those of the classical maximum likelihood estimator described in
Proposition 4.1.3.

Proposition 4.8.1 also holds for ARMAX systems if the input
sequence {u,} satisfies a condition of ‘persistent excitation’. This
condition is discussed below in Chapter 5.

Since the bias 8(p) — 0, disappears as p— co it seems that if p is
allowed to increase with N then a sequence of estimators converging
to the true value might be obtained. Thus we take p = p(N) for some
increasing function p(-) and ask whether p(-) can be chosen so that
O(N, p(N))— 8, a.s. This question has been investigated by Hannan
and Kavalieris (1983), who show that indeed O(N, p(N))— 04 a.s. if

1/2
lim sup p(N)(loiN ) >0.

N<

!

Thus in particular the choice p(N) = (N/log N)*/* would suffice. With
this choice, p(100) =5, p(10*)=33. For a given data set of fixed
length the appropriate choice of p depends on the positions of the

- zeros of Cy(z™1) (which are, of course, not known in advance). Since

the polynomial s/(z~*) in step (a) of the algorithm is intended to
approximate Aqy(z~*)/Co(z 1) it is clear that a relatively small value
of p will suffice if the zeros of Co(z 1) are well inside the unit circle.
In practice a value of p in the range 10-15 seems adequate in many
applications, but the method may be expected to run into trouble
if Co(z™ 1) is only marginally stable. '

Order determination

In the three-stage least squares algorithm as described above the
orders I, n of C, and A, are assumed known. It has recently been
shown by Hannan and Rissanen (1982) that a modification of the
algorithm will supply -consistent estimates of [ and n and of the
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parameter vector 0. Before describing this, we discuss model order
determination in somewhat more general terms.

Model order selection for the static least-squares: problem was
discussed in Section 4.3. Models of successively higher order are
fitted and the correct order is identified by a statistical test based

on the rate of decrease with model order # of the residual sum of

squares function Sy(n, ) = e"(9)e(f) (see Proposition 4.3.8 et seq.). It
was pointed out that this test could be interpreted as selecting those
values of n, 6 which give the absolute minimum of a function Ay(n, 6)
defined by

Ax(n, 6) =log Sy(n, 6) + in (4.8.7)

for some constant %. The statistical testing theory is only valid for
static models, but a similar procedure is often used for determining
the order of dynamical models such as the ARMA model (4.8.6).
Criteria of the form (4.8.7) were introduced by Akaike (1969), and
are called AIC criteria (IC for ‘information criterion’). They represent
a quantitative formulation of the so-called ‘principle of parsimony’
in model-building, namely that, other things being equal, the model
with the smallest number of parameters should be preferred. In
(4.8.7), log Sy(n, 6) decreases with increasing n but the second term
RKn imposes a penalty for introducing more parameters. By choosing

(n,0) to minimize Ay(n,6) we achieve a trade-off between accurate

model-fitting (small Sy(n,6)) and parsimony- of parametrization
(small n). The relative weights are controlled by the constant &.

- A slightly different approach to order determination starts from
the maximum likelihood method. For concreteness we discuss this
in the context of the ARMA model (4.8.6) although the ideas apply
more generally. If the disturbance sequence {e,} is normal with
mean 0 and unknown variance o2 then the likelihood function is

‘ 1 1 X
10,09~ g 52,5, 40).

As indicated, it depends on the orders n, I of A(z™!) and C(z™!), on
. the parameters 6" = (a,,...,a,, ¢;,...,c;), on the noise variance ¢2
and on the number N of data points. As before we denote

N

SnO)= 3. &k (0).

k=1

Parameter estimates are obtained by maximizing Ly over the range
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of allowable parameter values. We cannot, however, regard ! and n

as parameters and estimate them in this way: clearly min,Sy(0)

decreases as n and [ increase (since the minimum is being taken over
a larger set) and thus the ‘maximum likelihood’ estimates of n, |
will be whatever largest value we regard as allowable. Several authors,
including Akaike (1977), Rissanen (1978) and Schwarz (1978) have
examined this situation and concluded, independently and by widely
differing arguments, that the appropriate quantity to be maximized
is S

BIC\(L,n,0,0%) =log Ly — (I + n)log N.

As in the case of the AIC criterion, the BIC criterion introduces a
linear penalty for increasing the number of parameters. The weighting
of this penalty is however dependent on the number N of data points.
Let us denote by Oy and ¢% the maximum likelihood estimates
of 6 and o2 (for fixed n, 1, N). Then it is easily checked that

and that
A2 N A2
log Ly(l,n,0y,62) = — 0 (logéx + log2m —1).

Thus maximizing BIC, is equivalent to minimizing

log N

N
The exact arguments advanced in favour of this procedure need not
detain us here, particularly since these arguments do not directly

imply any optimality properties of the estimates [;4 produced.
Instead we introduce a family of criteria

logd% +(+n) (4.8.3)

Hc(ls n, 05 02) = log 0,\1% + (I -+ n)f%vl

where ¢(N) is an increasing function of N-(thus (4.8.8) is the special
case with ¢(N)=1ogN). We estimate [,n,6,0% by minimizing H,,
where n,l are limited by n<#(N), ISKN). Here 7, [ are a priori
upper bounds, possibly depending on N. We now ask how the
function c¢(N) should be chosen to obtain various desirable properties
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for the corresponding estimates. Properties which might be required
are: (a) high probability of selecting the correct model order for finite
data sets, or (b) consistency, i.e. asymptotically correct choice of
I,n,0,0% as N — co. No theory is available for (a), but Hannan (1980)
shows that consistency holds for certain choices of ¢(N) including
the choice ¢(N)=1log N corresponding to the BIC criterion.

Let us now return to the three-stage least squares parameter esti-
mation algorithm. Since this is intended as an approximation to the
maximum likelihood method, it is natural to suppose that it might
be combined with the order determination methods outlined above
to yield consistent estimates of model order and parameters. Such
a result has been demonstrated by Hannan and Rissanen (1982), for
ARMA models (see also Hannan and Kavalieris (1983)). The
three-stage least squares algorithm is as stated before (with u, =0),
except that step (c) is replaced by (¢').

(c) For each (n,!) calculate
1 X g *
G 3.1 =inf— Z (A(z™ Yy — Clz~1)8)?
[} Nk=1

where 0T =(ay,...,a,c¢y,...,¢;). Choose #,I in the range
0<n< n(N), 0<!<T(N) to minimize

logéd ,+(l+n) (N)

Denote by 4,(z71), C,(z ") the least squares estimates of A(z 1),
C(z™1) with orders #,[ respectively.

Hannan and Rissanen (1982) show that consisterit estimates of n, 1,0
are obtained under the same conditions as before if we take

o(N)=(logN)**%,  #N)=TIN)=(logN)\.  (48.9)

Here 9, 8 are arbitrary strictly positive constants. This is a satisfying
result because it means that the entire identification procedure,
including model order determination, can be carried out by a simple
combination of least squares estimators. Many computer packages
incorporating least squares estimation are available. Undoubtedly
the results stated above apply to ARMAX models if the input is

" persisténtly exciting,

Computational experience of this method is reported by Hannan

. and Rlssanen (1982) and by Kountzeris (1984) usmg simulated data.
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The method works well except when Ay(z™!) and Cy(z™') almost
contain common factors (in which case any identification method
would have difficulty:in deciding whether a cancellation had taken
place or not). The order p of the AR used in step (a) seems.not to
be critical. Kountzeris (1984) reports that for.data sets of length N
between 500 and 1500 a value of & between 1.5 and 2.5 maximizes
the frequency of correct order selection (upwards of 809 in straight-
forward ' cases). In applications, the upper bounds 7, T would
normally be set at an a priori fixed value rather than bemg calculated
from some formula as they are in (4.8.9).

Application of the above procedures to real data has so far not
been investigated in any detail. Here we must drop the assumption
that the data is generated by a ‘true’ ARMA model and regard the
problem as that of selecting (n,1, 6) to give a ‘best’ model according
to some criterion such as minimizing prediction error taking into
account errors of model estimation. The same procedure may be
used, but possibly some different function ¢(N) might be appropriate.
Exactly how this function should be chosen in a ‘prediction error’
context remains a subject for future research. :

Notes

System identification is a field with a multidisciplinary base which
has been in a state of active development for twenty years. It is not
surprising then that it has generated an extensive literature. For an
overview of the field, and a source of references, we refer the reader
to the book by Goodwin and Payne (1977), the survey by Astrom
and Eykhoff (1971) and tutorial papers.in a special issue of
Automatica (1981). A comprehensive account, including treatment
of non-stationary models and many practical details of data analysis,
is given by Box and Jenkins (1976). Further material on important
topics in systems identification not entered into in this book can
be found in Goodwin and Payne (1977) (experiment design, proce-
dures for estimating time-varying parameters and other topics), in
Soderstrom and Stoica (1980) (the instrumental variables technique)

. and Gustavson et al. (1977), Clark (1976) and Hannan et al. (1980)

(unique parametrization and model class selection).

Section 4.1 Detailed coverage of point estimation theory is provided
in a number of books on statlstlcs (Kendall and Stuart, 1979, for
example). :



212 . C SYSTEM IDENTIFICATION

Section 4.3 ‘For refinements and extensions of the theory of least
squares and of maximum likelihood parameter estimation see
(Kendall and Stuart (1979) and Rao (1965). Note that the normal
equations of least squares theory are often ill-conditioned. Robust
procedures for their solution are described in Golub (1965). Our

approach in this section to estimation of model order is a classical

one (Lehman, .1959).

Sections 4.2 and 4.4 The idea of formulating stochastic models as
predictor models and of interpreting least squares and- maximum
likelihood procedures for dynamical systems as prediction error
methods, which provides the framework for these sections, has been
emphasized by Ljung (1978), and Caines (1976), though it is implicit
in earlier literature. Proof of results on the asymptotic distributions
of parameter estimates. described in Section 4.4.4 are to be found in
Ljung and Caines (1979).

Section 4.5 The modified Newton—Raphson algorithm was proposed
by Astrom and Bohlin (1965). The generalized least squares algorithm
(in'a slightly different form) was devised by Clarke (1967).

Section 4.6 It is known that direct implementation of the recursive
least squares algorithm can.give rise to numerical instability. For
modifications of the algorithm which are robust see Hanson and

Lawson (1969). The recursive generalized least squares algorithm is_

due to Hastings-James and Sage (1969). The extended matrix method,
first described in Panushka (1968), was proposed mdependently by
a number of authors and a variety of names have been | given to it,
including Panushka’s method and the approximate maximum likeli-
hood method. There is evidence that the method can give estimates
which are not consistent (Ljung et al., 1975). For a full treatment of
recursive identification algorithms and their implementation we refer
to the recent book of Ljung and Séderstrém (1983).

Section 4.8 A procedure involving the first two stages of the three-
stage least squares algorithm was introduced by Durbin (1960); the
algorithm as given is due to Mayne and Firoozan (1982).

The development of order determination methods is outlined with
references in the main body of this section. The asymptotic distri-
bution of order estimates given by the AIC criterion has been
calculated by Shibata (1976). :

The “algorithms we have given are for off-line identification.
Recursive counterparts of these algorithms, suitable for on-line use,
are given by Mayne, Astrom and Clark (1984) and by Hannan and
Rissanen (1982).
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CHAPTER $§

Asymptotic analysis of prediction
error identification methods .

Chapter 4 provided for the most part merely a description of
identification methods for dynamical systems. It is true that if we limit
attention to simple moving-average models with uncorrelated dis-
turbances and if we assume that the system is describable within the
model set, then the models can be reformulated as static models to
which the analysis of Section 4.3 is applicable and we can deduce
certain propérties of the estimates. However, the question remains
open of how good are the estimates when more complicated models
are considered, or when the model set does not contain a description
of the system. The analysns which follows is centred on this question.

Ideally, we want precise information about the quality of an
estimate which results from applying an identification method to data
up to termination time N. Except in very restrictive circumstances,
analysis of estimates based on a data record of finite length is quite
intractable. However, it is not so difficult to investigate asymptotic
properties of the estimates in the limit as N — oo; this is our more
modest objective. The results of the analysis suggest. what estimates
would be obtained from an application of an off-line vxdcntlﬁcatxon
algorithm, or from application of an on-line algorithm which
approximates the off-line one, as N—oo. Of course, a major
shortcoming of our theory is that, by the nature of asymptotic
analysis, it does not tell us how large N must be for the theory to give a
reasonable picture of the parameter estimates based on a data record
of length N. ,

The chapter is organized with the 1nterests partly in mind of readers
who wish to understand the results without following all details of the
proofs. A central role is played in the analysis by a general

. convergence theorem, Theorem 5.2.1.. While the significance of

Theorem 5.2.1 is easily grasped, its*proof is rather intricate. In the
' ' 215
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body of the'chapter we explore the implications of Theorem 5.2.1. A
proof of the theorem is provided in Appendix A.

5.1 Preliminary concepts and definitions

A number of definitions associated with a general formulation of .

prediction error identification methods will now be given. These
definitions will be convenient when we come to state the hypotheses
under which the analysis applies.

There are basically three ingredients in the description of a
prediction error identification method: the system which generates
the data, the model set, and finally the identification criterion which
governs selection of the model. It i is helpful at the outset to consider
these individually.

5.1.1 The system

The system is the source of two stochastic processes, the r-vector
output process {y,} and the m-vector input process {u,}. Realization
of these processes (up to time N in the case of {y,} and up to time
N — 1 in the case of {u,}) constitute the data at time N.

Our aim is selection of a model whose response is a good.

approximation to that of the system, as a result of analysis of the data.

What kind of assumptions need to be made about the system for this
to be possible? We think of the system as defined by a family of
recursive equations driven by a sequence of independent random
variables, the disturbances. These equations, the system equations,
incorporate feedback relationships which generate the input. They
supply the input and the output at time k as a function of the
disturbances which enter the system after an arbitrary, earlier time |,
and of the state at time [/, which summarizes the effect on the
subsequent response of disturbances occuring at, or before, time I
Now we can expect that analysis of the data will supply a good model
only when the state at time I, which is not observed, does not have a
predominant effect on the response at times much later than k.
Insensitivity of the subsequent response to the state at time [ is a
characteristic of stable systems. It is natural therefore in the analysis
of identification methods to assume at the vcry least that the system is

stable.
A notion of stability, suitable in the context of identification, is
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suggested by properties of linear models in which a ‘stable’ transfer
function relates the disturbances {e,} and the outputs {y,}:

=g(z"Y)"T(z"Ye,, keZ.

Here the ¢, are uniformly bounded in fourth moment. T(o) is a matrix
of polynomials in ¢ and g(o) is a polynomial in ¢ such that the zeros of
o — g(o) lie outside the closed unit disc. If y,,, k=1L1+1,..., is the
output when disturbances e;, j =1,/ — 1,..., are ignored (we take this
to mean that they are set to zero) then we know from Proposition
2.1.2 that there exist constants ¢ > 0, 1e(0, 1) such that

Ely,— yk,ll“<cxk’ k=1 (5.1.1)

If the e, are mdependent then y,, is a function of e, ..., ¢, but y, , is
independent of ¢, k< /.

The 1nequa11ty (5.1.1), augmented by an analogous inequality for
the input, is taken as defining system stability.

Definition 5.1.1

The system which generates the data is said to be stable if there exist
independent random variables {v,},., and constants ce(0, 00), 1€(0, 1)
with the following properties: y,,u, are functions of v,,v,_,,...for
k=0,1,...and given integers k,I, with k>1>1, random varlables
Yk,1> Ukt can be found which are functions of v, ;, 9,4 5,...,0, and are

such that

Elly,— yk,l”4 <ci!

Ellu, — ”k,1”4 <ch
(It is understood that Vi = 0,4, = 0 so that the inequalities imply, in
particular, that E||y,[[* <c, E|lu,]* < c).

Generally speaking, the random variables {vk} are interpreted as
disturbances entering the system. The random variables y, ,and u, ,are

in such circumstances usually chosen to be the output and input-

generated by the system equations when we set the disturbances to zero
for time k<1,

Since our definition of stability was motivated by properties of linear
models we would expect that, at the very least, systems describable by
linear models of Chapter 2, which are stable in the customary sense,
would also be stable in the sense of Definition 5.1.1. This is the case, as
we now show.

Ean
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Consider a linear dynamical system with feedback,yin ARMAX form:
Alz™ "y =B Ny + Cz 7 Ve
Dz Yu,=E@z Yy, +w,, keZ

or having the state-space description

(5.1.2)

Xp+1 = Axk + Buk + Kek,
Ve=Hx, + e, (5.1.3)
uk=Mxkl+Wk, keZ.
In (5.1.2), A(0), B(o), C(0), D(6), E(c) are polynomials with coefficients
PXF, FXm rxXr, rxm, rxr matrices respectively. In (5.1.3),
A,B,K,H,Maren x n,n X m,n X r,r X h,m X nmatrices respectively.

In either case we assume that the disturbances, e,,w;,k,jeZ are
independent and there exists a constant ¢ such that

Elel*<c Elw]*<c, allkeZ. (5.1.4)

Proposition 5.1.2

Suppose (5.1.4) is satisfied the system {y,,u,} is stable if either

(@) {yx}, {us} are generated by ARMAX equations (5.1.2),det A(0) # 0,
det D(0) # 0 and the zeros of o — det [A(c) — oB(c)D ~!(¢)E(0)]
and o — det D(¢) lic outside the closed unit disc; or,

(®) {»}> {u} are generated by state-space equations (5.1.3), and the
eigenvalues of A + BM are contained in the open unit disc.

Wemention that the hypothesesin Proposition 5.1.2 assure stability
of the closed-loop transfer functions through which the inputs and
outputsareexpressed in terms of the disturbances. In view of the theory
of Section 2.1 then, we may take equations(5.1.2), or (5.1.3) to define the
outputs and inputs as fourth-order random variables, under the
hypotheses.

PROOF Let us take the independent random variables {v,} required
for verification of stability to be

Uk=(‘:k>, keZ.
k

Formal manipulation of the transfer functions associated with system
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(5.1.2), orwithsystem(5.1.3), gives the followingexpression for y, and u;,
in terms of the composite disturbance vectors v :

V=8N u = T(z™ ")y
In the case of ARMAX description, :
. S@)=A"o)oBo)D o) C(0)]
and
T(0) = D™ }(0)[ E(0)S(0) + (1i0)]
in which |
A(0) = (A() — 0B(6)D ~(6)E(0)).
In the case of a staferspace description,
S(o)=[HW ~Y(c)BIHW ~Y(0)K + I]
and
T(6) =[MW~(c)B + MW ~'(0)B]
in which R
W(o) = [o] — (4 + BM)].

It is not difficult to deduce from the hypotheses that, in either case,
S(c) and T(c) are expressible as

S(0)=5(0)"'8(c) and T(0)=t)"'T(o) -

‘in which (o), T(0) are matrices with entries polynomials in o, and (o),

t(c) are polynomials with the properties that the zeros of ¢ — s(o) and
o — (o) lie outside the closed unit disc.
By the theory of Section 2.1, equations (5.1.2), or equatlons (5.1 3),
define the outputs and the inputs as fourth-order random variables.
~ For given [ 2 1 define y,, and u, by

‘ Via=38(z" )vk.l and w,=T(z _1)Uk,z
in which
L for k>1
KTY0 for k<I

Notice that y,; and u, ; are functions of v, ;,0;42,...,0;
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It follows. from Proposition 2.1.2 that there exist constants
A€(0, 1), ¢, >0 such that

E”J’k .szl|4+E"uk—“k1”4<C1 D ;UE'“Uk—j”4

Jj=k=1
<Ak k=1

where ¢, = ¢;¢(1 — 4)™ 1. Here c is the constant of hypothesis (5.1.4).
We deduce from these properties of the random variables y, ;, u,
that the system is stable. O

5.1.2 The model set

A family of models is supplied, members of which are specified by a
vector parameter § which ranges over a subset D of R? The model
corresponding to the parameter value @ is written .#(0).

Weshallassumethat the models .#(6) can be formulated as predictor
models of the type considered in Section 4.2:

yk=ﬁc(9;yk_lauk_})+ek3 k=1,2,...

Here, as previously, y*~! denotes {y,—1,Yx—25---» Yo} and u*~1 de-
notes {u,_y,u,_5,...,4}. {€} is a sequence of independent zero-
mean random variables. For k=1,2,..., () RTxR™*x
R™ — R" is a deterministic function. o
Selection of a predictor model amounts to selection of the
predictors, the fi(6;-,-). We shall consider parameter estimation

schemes which involve minimization of a function of the predictors

evaluated at thedata. Itisnatural to limit attention to models for which
datainthedistant past haslittleeffect on the current prediction; this will
mean that all data will make a significant contribution to choice of the
model and not just the early data. The precise conditions we shall
impose on the models are suggested by those which thelinear models of
Chapter 2 can be expected to satisfy. These conditions are embodied in
the following definition. :

Definition 5.1.3

The predictors associated with the family of models {.#(6): 6eD} are
uniformly stable if D is compact, and there exist constants ¢ >0,
A€(0,1) and an open neighbourhood 2 of D with the following
properties: ,
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(u.) 6 FACH ﬂ" bis contmuously differentiable on 2 for arbit-
rary vectors oc" LB 1 and for k=1,2,.

(®) 11 f(8;0~ 1,0 " Y| <cfor all 9D, k = 1, 2,. ..(here 0*~! denotes
zero vectors of appropriate dimensions) and

(c) Forg,takentobethefunction f,,andalso thefunction(3/06)f,,we -

have

lg(6;0t ™%, B 1) — qu(B; &1, B~ )|
k=1
= Cs;o AT LNl — &ll + 1B — Bl 1

for arbitrary vectors o« ”' (=oy_y,...,q)), fF7 L a1 B,
k=1,2,...

Builtin to the definition of a uniformly stable family of predictors is
the requirement that the parameter constraint set D be compact. The
constraints on the parameter 6 which define D may be seen as
safeguards introduced into the identification algorithm under con-
sideration which restrict the size of the estimates and steer them away
from values for which the predictors are barely stable. These
safeguards may be purely notional; we can expect that if the system is
stable and if the system can be closely approximated by a model, then
unconstrained minimization of the identification criteria will yield

- estimates which are confined to some set D with properties as

described in Definition 5.1.3.

Let us examine conditions under which model sets comprising
stochastic dynamical models of Chapter 2 yield uniformly stable
predictors. Consider predictors f,(6;-,) associated with a family of
ARMAX models:

Az™ ) =Bolz Y1 + Cilz™ e, k=0

Y=0,1,= 0, ¢, =0, k<o O
or associated with a family of state-space models:
Xp+1 =onk+B0ukv+ Koek, kZO
Wv=Hgx, + ¢, k=0 (5.1.6)

x0=0,.

In either case, {e,} is a sequence of independent, zero-mean random
variables, and @ ranges over an open set & which contains the
compact set D of permitted parameter values.

~ N N~ o~

o~ ~~ N ~ ~~ —~ T~ ~ — ~

7N ~~ N

“N PN N
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In (5.1.5), Ag(0), By(0), C4(0) are polynomials in o with matrix
coefﬁments whose entries are continuously differentiable functionsin 8
on ¥. We assume that

C(0) = 44(0) =
In (5.1.6), Ay, By, Ky, H, are matrices whose entries are contmuously

differentiable functions in 8 on &.
The predictors associated w1th the models (5.1.5) are

VAC AN A k=1,2,...
where the y, are obtained from the recursive equations
Colz™ W =2[Colz™Y) — u(z_l)]“k 1+ Bz DBy,
k=0,1,...
Ye=0,0,=0,8=0, k<0
The predictors associated with the models (5.1.6) are
S0k~ BF Y = H %, k=12,...
in which the X, are obtained from
Bie1 = Ag%i+ BoBy + Kol — Ho%y),  k=0,1,...
Xo=0.

(These formulae were derived in Section 2.6.)

Proposition 5.1.4

The predictors associated with the family of models {.//l (6):0eD} are
uniformly stable if either: .

(@) The models are the ARMAX models (5.1.5) and for each feD, the
zeros of o — det Cy(0) lie outside the closed unit disc; or,

(b) Themodelsarethestate-space models(5.1.6)and, foreach feD,the
eigenvalues of Ay — KyH, lie in the open unit dISC

PROOF (a) Here we consider ARMAX models (5.1.5). By
hypothesis, the zeros of ¢ — det Cy(o) lie outside the closed unit disc.
for all 6eD. The coefficients of the polynomial Cy(c) are continuous in
6 on the open set & which contains D, and the determinant function is

. continuous. We can deduce therefore from the compactness of D that
~ there exist a bounded open set 2 which satisfies

: Dc@c@,
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and ¢ > 0 such that the zeros of ¢ — det Ce(o) liein the set {oeC: |a| >
1+ ¢} for all fe2. We make this choice of 2.

The first two conditions in Definition 5.1.3 are obviously satisfied,
and we attend only to the third.

Let af71 (= (0g—yg,..-»%)), ¥~ and &, ,F*"* be two pairs of
vectors at which fk((?, ,') is evaluated, and let 6; be an arbitrary
component of the parameter 6.

It is easy to show that Af, defined by

PG A Bl ¥ (-

Afi=| 0 . k=1 pk—1 4 p—
gé';fk(e’a 9ﬁ )_a_ojfk(eaa ,B'k )

is generated by the recursive equations

Colz A Sy = Aglz™ )01~y — Gs- %— 1) + Bo(z ™ )(Bi-y — Bi-1)

i=0,1,.
Afi=0,0= ‘i=0,ﬁf=ﬁ,-=0, i<0 (5.1.7)
in which :
Colo) i O
Coloy=| 0 T
D=1 2 ' cho
1 Cola) — Aglo)
= -1 a
oo)=0c 59_1.[c0(0') _ Ag(a)].
and v
B,0) By(o)
Byo)=1| o
| B

By (5.1.7) and in view of the special structure of C,, Af, can be
expressed in terms of the composite vectors y;:

9, = col(&; — &, B; — B) i=0,...,k—1
yf=02 i<0

as
Afk [ge(z_l)] IG,,(z 1))’1: 1
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“Here
go(0) = (det Cy(0))?

and G,(0) is a polynomial in o whose coefficients depend continuously
-~ on 0. '

By construction, the zeros of ¢—g,(0) are contained in {ceC:

lo| > 1+ ¢} for all 0. Since 2 is bounded, the coefficients of G,
remain in bounded sets as 4 ranges in 9. We now apply Proposition
2.1.2 when we identify {e,} with the deterministic sequence {---0,0,
Y0sY1,-..} and set d = 1. We conclude that there exist constants & > 0
and Ae(0,1), which do not. depend on 9@ or k, such that

k-1
IAfl SE{;}%’HII vill. (5.1.8)

We can assume that, in these inequalities, the norms are so chosen
that ||y; | = [ e[| + || ;||. Bearing in mind the definition of Af, and y;,
we deduce from (5.1.8) that the third condition of Definition 5.1.3 is
satisfied for our chosen 4 and some ¢ > 0.

(b) The case of state-space models can be treated in exactly the
same way, following reformulation of the state-space equations as
ARMAX equations. This is possible since the hypotheses on the state-

space models imply that the associated ARMAX models satisfy the

conditions of part (a). , O

5.1.3 The identification criterion

Prediction error formulation of an identification method requires
specification of a sequence of functions. /,(-,"),k=1,2,...,from the
space R? x R"to the space of d x d matrices, and a real-valued function
h(+) with domain the space of d x d matrices.

Let y¥, u"~! be data at time N. Let &(0), k=1,2,... be the
prediction errors associated with model .#(6):

8k(0)=.Vk—fk(0;yk_1auk_1), k=1,2,...

We seek a parameter value which minimizes the identification
criterion -

0 Vy(0; 9", u 1)

in which

Va(6; ", u" 1) = h(Qn(8; yN,u" 1))
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and
1 A
On; YN, uV 1) = N 2. (0, e(9)).
, =1 .

It is convenient to collect together under the following definition
those properties shared by the commonly used identification criteria.

Definition 5.1.5

The identification criterion is said to be quadratically bounded if h(-)
is a continuous function and there exist an open neighbourhood
9 of the parameter constraint set D and a constant ¢ >0 with the
properties:

(a) The functions I,(,"), k=1,2,... are continuously differentiable
on ¥ xR B '
() 116,0)] <c, for all 0D, k=1,2,...

- {c) “%lk(ﬁ, 8) N <cllel|, for all Pe2, ceR", k=1,2,...
and; |
(d) %lk((), &) <clell?, for all 0e2, eeR", k=1,2,...

Examples of quadratically bounded identification criteria are the
least squares criterion

1 N
V6, yV,u ) = _ﬁk; & O)Wiel6)

in which the weighting matrices W, are uniformly bounded; and the
criterion
N

Va6, = det - 3. eEF )

which, we recall, arises in connection with maximum likelihood
identification methods when the disturbances are assumed to be
gaussian (see Section 4.4).

5.2 Asymptotic properties of the parameter estimates
Let 8y minimize the identification criterion
0~ Vy(0;y",u=1)

~~

~



N
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associated with data ¥, u¥=! at time N. 6 then is a parameter

" estimate obtained under ideal circumstances when exact criterion

minimization is possible.
We consider the problem of characterizing the set into which the
estimate 0, converges as the length N of the data record tends to

infinity.
In the event that the limit

lim EVy(@;y", 7Y (5.2.1)

exists for all feD, we mlght expect that, as N - o0, Oy converges
into the set

{6: 11m EVy@; yN,u" Y = mm hm EVN(tp y" V- 1)} (5.2.2)

almost surely. This would mean that the identification method
supplies a parameter value which minimizes the expected value of
the identification criterion in the limit as N — co.

The description we now give of the asymptotic properties of 0y

involves a limiting set which has the general features of the set (5.2.2),

but differs from it in two respects. Firstly, EVy(6; y",u" 1), which
can be written Eh(Qy(0;y",u¥1)), is replaced by h(EQy(6;y",
u¥~1)). This means that, in the absence of further assumptions, we.
sacrifice the interpretation of the limiting set as a set of parameter
values which minimize,.in the limit, the expected value of the original
identification criterion. Secondly, we make allowance for possible
non-existence of the limit '

Jim H(EQ(6; yhul )

by introduction of the ‘lim inf’ operation.

Theorem 5.2.1

Suppose that the system which generates the data is stable, . the
predictors associated with the model set are uniformly stable, and
the identification criterion is quadraticaily bounded. Then

0y— Dy, a.s., as No oo,

D;={0: maxlim inf[A(EQy(0)) — HEQNW)]=0}. (52.3)
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Convergence is understood in the sense that, almost surely, for
every ¢>0 there exists N such that, for all N >N the “set
{0:10 — BNI <¢}n Dy is non-empty.

. .PROOF See Appendix A. ‘ C

We refer to Definitions 5.1.1, 5.1.3 and 5.1.5 for explanation of
the terms ‘stable’ system, ‘uniformly stable’ predictors and quad-
ratically bounded’ criterion.

The theorem is important because of the ease with which it can
be applied to give more explicit information about the limit set in
special situations of interest. A number of such applications will
shortly be given.

To illustrate the connection between the set D, and the set (5.2.2),
let us suppose that the function A(-) is linear and that the limit (5.2.1)
exists, for any 6eD. Under these assumptions the expectation
operator and the action of h commute and we have, for given 0eD,

max lim inf [A(EQx(8; YN, u" ~ 1)) — h(EQN(W; y™, u¥ ~1))]
veD N-ow
= lim EVy(0; y",u"~ ') —min lim EV,(f;y",uV 1),
N-w veD N=+w

It is clear from this equation that the two sets D, and (5.2.2) coincide.

5.3 Consistency

Anindication that an identification scheme will perform satisfactorily
is provided by the property that, if the data is assumed to be generated
by a system which, asymptotically, is indistinguishable from a model
in the model set considered, then the parameter estimate 8y will
converge into the set of parameter values associated with such
models. This is the property of consistency.

We shall interpret the notion that the data is generated by a system
asymptotically indistinguishable from one of the models as meaning
that the set Dy, defined by

I .
Dp= {GGD hm — Z El 9= 9:(0) 1% =0}, (5.3.1)
is non-empty. Here 3, is the conditional expectation of y, given

V15 Vi—2s+s- a0d Uy 1, Uy_ ..., and P(6) is the (one-step-ahead)
predictor associated with model’ .#(6), evaluated at the data.
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According to this interpretation, we assess a model by the quality
of its predictors and view. §, as the best predictor of y, given
knowledge of the true system. The model .#(f) and the system are
taken to be asymptotically indistinguishable if the mean square
~ difference between the predictors supphed by #(6) and those
available if the system were known is zero in the limit as the number
of data points tends to infinity.
For the sake of simplicity we now limit attention to identification
criteria which arise in least squares estimation, :

VA(6) = trace [i 5 ak(e)s{(o)] :
N =

and in maximum likelihood estimation based on assumptions of
gaussian disturbances, namely,

Va(0) = det[ isk(())e{(e):l

/

(see Section 4.4).

When such criteria are adopted, and when the system is asymptoti-
cally indistinguishable from a member of the model set, a more
refined description of the limiting set can be given than that in
Theorem 5.2.1.

Proposition 5.3.1

Suppose that the data is generated by a stable system and the
predictors associated with the model set are uniformly stable.
Suppose also that Dy (given by (5.3.1)) is non-empty, that

I(6,e)=¢ec", fork=1,2,...,0eR? ¢ceRP,

and either .
h(*y= trace(") (5.3.2a)
or
h(-) = det(), (5.3.2b)
and there exists 6 > 0 such that ' '
EL— 90— P)"1>0I,  fork=1,2,... ~ (53.3)
Then '
N
6N—>{9:1im infL 3 Elg,— 90)17 = 0}, as. 0
N-ew N k=1 '
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Proof of the proposition requires. the following estimate on the -

determinant of the sum of two symmetric matrices.

Lemma . 5.3.2

Let 4, B be symmetric n x n matrices. Suppose that A is positive
definite and that B is non-negative definite. Then

det(A)
n’lmax(A)

Here A,,,,(A4) dénotes the maximum eigenvalue of A.

det(A + B) = det(A) + trace { B}.

PROOF Let A'Y2 be a positive definite square root of A4 (see
Appendix D.1). By the properties of the determinant function

det(4 + B) = det(AY*(I + A~ 12BA~ 134112
= det(A'2)det(I + A~ 2BA~12)det(41/?)
=det(A)det(I + A~ 2B4A~ 112
=det(4) [T(1+4d). (5.34)
i=1
Here the d; are the eigenvalues of A~1/2B4 112,
Since the trace of B is equal to the sum of the eigenvalues of B,
Amax(B) Z trace { B} /n. (5.3.5)

Let y be an eigenvector of B corresponding to A, (B) and choose x

- such that y = A~ '/2x, Then, since for a symmetric matrix S

'Sz
o [lz)*

and the maximum is achieved at any eigenvector corrrespondmg to
Amax(S), We have

Amax(S) = max, -7

TA—I/ZBA—l/Z
Amax(A"12BA™12) = max>- 2 22 %

z#0 lz)?
T4-1/2 -1/2
> XA B;4 X
ix
_Y'By IyI?
Iyll? yTAy
- ZTAz
2 Apax(B max
By
2 'lmnx(B) .
}'max(A)

~~



—
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But the eigenvalues d;,, i=1,...,n, are nqn-negative; it follows that
Amax(B)
14d)=> maxr -,
[Ji+d=1+7
We deduce now from this inequality, (5.3.4) and (5.3.5) that
det(A + B) = det(4) + —tA)._irace By, 0
max(A)

PROOF OF PROPOSITION 5.3.1 The identification criterion is (1n
either case (5.3.2a) or (5.3.2b)) quadratically bounded, the system is
stable and the predictors are uniformly stable. It follows from
Theorem 5.2.1 then that 6, converges, a.s., into the set D, (see (5.2.3)).
Take 6eD,. We shall show that -

lgvrgglf%i 19— 5:0) Hz} -0 (536)
and thereby prove the proposition. ‘
We define v, k=1,2,... by
Vi = Ve — D
Then, for k=1, 2,..., and yeD

Ee)el () = Eve— 91D — 9T
- =EL— 90 + vid D — 5u¥) + T

by definition of v, . '
= ED = ) I00 — 9" + Evevy (5.3.7)

since v, has zero mean and is uncorrelated with y*~1, %=1,
Suppose first that (5.3.2a) is true. Take i to be any point in D. Then
since feDy,

OZIi;r_l'igf{trace< N 2 e(0)er (6 )
1 X T
—trace< N Z: & (W)er ()
N
= lim inf { trace( Z
Z

N-w
— trace (

— %(6)] D’k ?k(9)1T>

= (W) 19— Pk(tﬁ)]T> }
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by (5.3.7)

‘ ‘ X 1 X :
- timin{ 5 5 El3u= 4O 7 3, E15e 50 ).
(5.3.8)

Since Dy is non-empty, by assumption, we may choose /e Dr. Then
lim - ﬁ El 9= 9)1I? |
N-ow N k=1 k k
exists and is zero. It follows from (5.3.8) that

N i
0> ll;q"lglf{ﬁk; E 9 — 94(0) Ilz}-

We have shown (5.3.6), as required.
Now suppose that (5.3.2b) is true. Again take y an arbitrary vector
in D. In this case we deduce from the hypothesis e D, and (5.3.7), that

L. 1 N . 1 N
0> hmlgr{ det E-ﬁk; £(0)eX (6) — det Em; sk(w)sl(t/f)}

/

= li;n inf { det (Sy(6) + Py) — det (Sy(¥) + PN)}
where
1 X T
Sn(n)= ﬁk; E(®i = 9m) B — 9uln))
and
P L i Evol.
| N= N & %V -
This inequality can be written

lim inf {det ($,(6) + P) — det Py—A)}<0  (539)

in which Ay(Y) = det (Sy(¥) + Py) — d¢t (Py).
We now choose e Dy. It is easy to show that Sy(i) >0 as N — co.
Since {Py} is a bounded sequence (the v, have uniformly bounded
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second order moments, remember) and the function det(-) is con-
tinuous, we have that the functions L — det(L + Py) are contmuous at
zero, uniformly in N. It follows that

im Ap(Y)
N-w
exists and is zero. Equation (5.3.9) therefore implies
liminf {det (Sy(6) + Py) — det Py} <0. (5.3.10)
N—=

However, in view of hypothesis (5.3.3) and the uniform bounded-
ness of the second moments of the v,, there exist o, &> 0 such that
det(P) <o and A, (P)>& k=1,2,... We deduce from Lemma
5.3.2 that there exists also some ¢ > 0 such that

det {Sx(6) + Py} — det Py = ctrace {Sy(6)}

1 N
=C[TV— > Il)’k—)’k(f?)llz] for N=1,2,...
k=1 ‘

From this inequality and (5.3.10) it follows that

P I 2

— — <0.

thggxf{ 3 2 19— 240)] }

We have shown that (5.3. 6) is true. . O

Consistency properties of identification schemes which mvolve a
variety of model sets can be deduced from Proposition 5.3.1, when the
system is describable by a model in the model set. We find, typically,
that a scheme is consistent provided the closed-loop system which
generates the data is stable, the models supply uniformly stable
predictors and that an additive term in the input is ‘persistently
exciting’.

A persistently exciting input {w,, keZ} is one which, loosely
speaking, is sufficiently varied that the resulting data provides as

much information about the input/output characteristics of stable.

linear systems on which it acts as consideration of all possible inputs.
The precise form that our definition of a persistently exciting input
takes is suggested by consideration of least squares identification of
the parameters ay,...,a,, in the system described by the equations

W=aWe g+ Fayw_ g+ e, k=1,2,..., (53.11)

from observations of {y,} and knowledge of the inputs, here written
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{wi}. {e:} is a sequence of zero-mean, uncorrelated, random variables

with common variance 0*(g” > 0). The least squares estimate dyy . ;, of -

the unknown parameters a with components a,...,a,, based on
N + 1 data points, is unbiased and has covariance

Ty = aZ[ 5 wk(M)w,T(M)]—l
' k=1

where
Wk(M)=Col[Wk, Wk_l,...,wk..M]. (5.3.12)

(These properties are deduced from the results of Section 4.3.)

A sufficient condition that the estimates dy, converge to the true
‘parameter values in mean square, and therefore that the input/
output characteristics of the system are fully determined in the limit as
N — o0, is that there exists 6 > 0 such that

%gl w(M)wr (M) =61 (5.3.13)

(in the sense of the usual ordering of symmetric matrices), for all N
sufficiently large. For then, given arbitrary feRM the variance ETZy¢
of the estimate 74y, of ETa is bounded by 02| €]|2/0N, and this last
number tends to zero as N — co.

Existence of a number & > 0 such that (5.3.13) holds is a suitable
defining property for a persistently exciting input relevant to simple
models with the description (5.3.11); for more complex systems it is
often necessary to modify the definition and require that (5.3.13) holds
for arbitrary M.

Definition 5.3.3

Let wy, keZ, be a sequence of vector random variables with uniformly

bounded second moments. For any integer M 2 1, we define w,(M) by
(5.3.12). The sequence {w,} is said to be a persistently exciting sequence
of order M if there exist § >0 and N, > 0 such that

1 N
v L EmMWI(M) 28I,  for NN, (53.14)
k=1
It is said to be persistently exciting of infinite order if there exists § > 0

with the following property: corresponding to any integer M > 1,
an integer N, can be chosen such that (5.3.14) is satisfied.




R N N N N A N N N N N N N

T

A NN NN W N N

234 ' ASYMPTOTIC ANALYSIS

Notice that we have defined sequences of random variables which
are persistently exciting; this is with a view to considering inputs
which involve, possibly, a random component.” Of course the
definition subsumes that of persistently exciting deterministic
sequences.

We see that any sequences {w,} of zero-mean, mdependent vector
random variables with uniformly bounded second-order moments is
a persistently exciting (stochastic) sequence of infinite order, provided
there exists & > O such that Ew,wj = 61, for all k sufficiently large. If we
assume in addition that the sequence {w,} has uniformly bounded
fourth-order moments, then realizations of {w,} define persistently
exciting deterministic sequences of infinite order, almost surely (this
last assertion can be deduced from Theorem 1.1.15 and the fact thata
countable intersection of probability-one events is a probability-one
event). Recursive procedures which generate persistently exciting
deterministic sequences are also available.

The following lemma provides a direct connection between the
notion of a persistently exciting input as we have defined it and
the property that the input uniquely determines the input/output
characteristics of stable systems on which it acts.

Lemma 5.3.4

Let L(o) be an r x m matrix of rational functions in ¢. It is assumed the

zeros of the denominator of each entry of L(g) lie outside the closed

unit disc. Let {w,},z be a sequence of m-vector random variables
which have uniformly bounded second-order moments, and suppose
that

llmmf— Z E|L(z"YYw,|?=0." (5.3.15)

N-

Then L(o) is identically zero if either of the fo]lowmg conditions is
satisfied:

(a) L(o) can be expressed as a polynomial in o:
L(e)=Lo+Lyo+ 4+ Lyo™

of degree M and {w,} is a persistently cxcmng sequence of
order M.

. (b) {w,} is a persistently exciting sequence of 1nﬁn1te order.
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PROOF (2) Suppose that L(g) = Lo+ L,0 + *** + Ly,c™ and {w,} is
persistently exciting of order M. In this case o

* Lz7w = L(M)w(M)

in which L(M) = [Lo.L, .. iL,J and wy(M) = col [We, Wy— 1y.--s W —c]-
For k=1,2,...,

1Lz w1 = I L(M)w(M)[|* = trace L(M)wy(M)wi(M)LT(M)

r

Z Tw(M)w] (M)L;.

In this last expression, /; denotes the ith column of LT(M). It follows
that

1
5 z EILGwill*= 3 IT[I iEwk(M)wk(M)]
k=1 k=1

By the persistent excitation hypothesis, however, there exist § > 0 and

. N, such that

I &
N L, EwAMWIM) 231, for N2 No.
For N = N,, then,
N Z E|LE™Ywil* 2 8 Z Fl=5 Z ILA%  (53.16)

Here, ||L;|| denotes the trace norm (trace[L,LT])!/% By (5 3. 15) and
(5.3.16)

= Tirm inf e -1 2 12
0 lanlglka;EllL(z Wl %5i=ZOIIL.II

which implies that L(g) = Ly + L,o + *+* + Ly6™ =0.

(b) Now suppose that {w,} is a persistently exciting sequence of
infinite order. Let {L;} be the coefficients in the formal expansion of
L(o) about o =0: .

L(o) = 'io Lio'.

Bearing in mind that the w, have uniformly bounded second-order
moments, we can deduce from Proposition 2.1.2 that there exist
constants ¢ >0 and A€(0, 1), such that for arbitrary k,J, K,

<cl. (5.3.17)
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"Given an integer M > 0, L(z™ ')w, can be written as the sum of two
terms

7

0

M :
L(Z_I)Wk=_ZOLiWk—i+ > Lwes.

i=M+1

Writing ) Lw, -, simply as'), we have
' 2

. M |2 M \T 0 0
“Hwl2=E 2E +E
ElL"wll i=ZO + |:<i20> <i=nzf:+1):| ‘i=M+1
M |2 M 12\ 1/2 w 2\ 1/2
i=0 CJli=o i=M+1
by Schwarz’s inequality :
M 2
i=0

by (5.3.17). It follows that, for N=1,2,...,

2
—2cAM+1r2 (53 18)

M
Z Liw—;
i=0

LS Bl wlr 2~ S E
— W = —
Nk; z k N¢=

{w,} is a persistently exciting sequence of infinite order and so is
certainly of order M; in consequence there exist § >0 (5 does r}Ot
depend on M) and N, > 0 such that (5.3.14) is true. We deduce, using
the arguments of part (a), that

1 N M

— > E Lw,_;
NkZI 5

It follows from (5.3.15), (5.3.18) and (5.3.19) 'that

2 M
>6 S ILJ* for N> N, (5.3.19)
i=0 .

i=

1 XN M
0 =liminf— Z E|Lz " Yw|2=6 Z | Lj|2 —2c2AM* 1,
N-wo N= i=0

Taking the limit M — co and remembering that § does not depend on
M, we deduce that

.Z,o ILilI2 =0.
It follows that L(¢) =Y /2o L;0* =0. O

It is clear from this lemma that, if L, (¢) and L, (o) are stable transfer
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functions, if w, is a persistently exciting sequence of infinite order, and

if Li(z"")w, and L,(z™')w, are sufficiently close in the sense that

1 0 : .
liminf— 3 E[Li(z™)w, — Lz~ )w,||2 =0,
N-ow Ni=0

then L; =L,. _
Finally we prove a representative theorem on consistency. Here
ARMAX models are considered:

Aoz )= Bolz™ Yt~y + Colz™ Ve

Associated with each model are transfer functions A,(-)™ !By(") and
Ag '(-)Cy(") which relate the outputs to the inputs and disturbances.
The theorem asserts that the estimates provide, in the limit, the
correct transfer functions. (We view two transfer functions as the same
if their values coincide wherever they are both defined). This is clearly
the best that can be achieved from a procedure which involves
processing input/output data.

Theorem 5.3.5
Consider a system described by the ARMAX equations
Aoz™ W= Bolz™Yuy_; + Colz™ Ve,  keZ

in which Ay(0), By(0), Co(0) are polynomials with matrix coefficients.

The ¢, are independent, zero-mean random variables which have ‘

uniformly bounded fourth-order moments and are such that

Eeief 2al,  for keZ

for some o > 0. ‘
Suppose that the control u, is generated by linear feedback acting

on y* and u*~! with an additive disturbance, w,, independent of e

JjeZ: .

H(z™ Y, = F(z™ Yy, + w, (5.3.20

and that the w, have uniformly bounded fourth-order moments. Here,
H(o) and F(o) are polynomials with matrix coefficients.
Let the predictors be calculated on the basis of models
{#(0):0eD}: :
Az W =Byz Yy + Coz™Ve,,  k=0,1,...
V=0, u, =0, e, =0, k<0

—

N
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in which A(o), B(o) and C(o) are polynomials with rﬁatrix coefficients

* continuously differentiable in # on some open set 9 containing D, a

compact set.
Wc assume the followmg

Conditions on the identiﬁcation criterion:

WO =+ Z lex(O)11>

or '
1rx
Va(0) = det N[ :;1 b‘k(B)EI(@)J

in which ¢,{0) is the prediction error associated with .#(6).

Stability of the closed loop system:

The zeros of o — det(Ao(c) — 6By(6)H ~(0)F(0)) and of o —det H(o) "

lie outside the closed unit disc.

Uniform stability of the predictors:

C,(0) = I, A,(0) = I and the zeros of ¢ — det C(0o) lie outside the closed
unit disc for all 8eD.

The true system can be represented within the model set:
Ap'()Bo() = A5 '()Bo()) and Az'()Col")= A5 '()Col")

for some 6*eD.

Persistent excitation:

The disturbance w, is a persistently exciting sequence of infinite order.

Then
| O — {0: 45 *()Bo() = A5 1()Bo() A
and Ay '()Co)=A51()Co()},  as.

as N— 0.
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prOOF We first check that asymptotic analysis of 0 is covered by
Proposmon 5.3.1. In view of Propositions 5.1.2 and 5.1.4 the system
which generates the data is stable, and the predictors are unlformly

‘'stable. The hypotheses on the identification criterion imposed in

Proposmon 5.3.1 are also true smce e, = yr — i and, by assumption,

é.er > al, keZ, for some a > 0.
Proposition 5.3.1 will be applicable then if we can show that .

lim Z E| 9 — 9(6®) ||2 (5.3.21)
N-'oo
for this will mean that the set Dy defined by (5.3. 1) is non- empty
Now J, is given by

9= (I — C5 Al +27C5 *Boti (53.22)

(for simplicity we have written A in place of Ay(z™1), etc.). The
predictors J,(6) supplied by #(0), 0eD, are

90) = (I — C5 ' Ay — &)+ 271 Cq ' Boluy —m)  (5:3.23)

in which.

fof0 k20 [0 k20
Ay k<O an ™=V, k<O

The presence of the terms &, L m this last equation is due to our
choice of zero data values prior to time k=0 for the purpose of
calculating the predlctors

By hypothesis, Ag'Bp=Ag'By, Ap'Ce=A5'Co Since
Co(a) is invertible for some o (C,,(O)— I, remember) it follows that
CylAgp=Cy A4, But then Cz'By = Cy' B, since

Cg* Bgt = Cg* Ao*Aoﬁ Bg* = Co leAo Bo = Co_ lBo.
Subtracting equation (5.3.23) from equation (5.3.22) therefore gives
D= 9u0*) = (I — Ca ' Ap)ey + 27 Cy' By (5.3.24)

Now the y, are uniformly bounded in second moment since the
closed-loop system is stable. Because the roots of o — det H(o) lie
outside the closed unit disc and the w, are uniformly bounded in
second moment, it follows from Proposition 2.1.2 that the u, given by
the feedback equation (5.3.20) are also bounded in second moment. -
Since the #, and &, are zero for k>0, and since the zeros of

" o—det Cp(o) lie outside the closed unit disc, it follows from
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Proposition 2.1.1 applied to equation (5.3.24) that
Ellpe—yd0M)>—>0  ask—oo. (5.3.25)
The property (5.3.21) is then true and we can apply Proposition 5.3.1.
-This gives
Oy — 51
where

. N
ﬁ,={0=lmxf§k; EN9— 90)1” =o}.

Take 0 an arbitrary point in D, We shall complete the proof by
showing that 4; 'B, = A5 B, and 4, !C,= A5 'C,.

Substitution of the feedback control equation into the system
cquation gives

Vo= Me, + Mw,_, (5.3.26)
where =(Ao—27'BeH 'F)™'Cy, M =(Ag—z"'BoH 'F)™!
B,H™! and .

uy=H"'FMe, + H™'(I +z~'FM)w,. (5.3.27)
We also have from (5.3.22) and (5.3.23) that
k= Id0) = Koy — Lyt~ +dy, (5.3.28)
where Ky=Cy'4,— Cy1Aq, Ly=Cy'By— Cy !B,
and

=(I—Cy'Ag)éi + Cy ' Byt ;-
The reasoning that led to (5.3.25) gives v
E|d)*—0  as k- o0. - (5.3.29)
Now -
" 2| Koy, — Lot 1 + diell® 2 | Koy — Loty 11> — 2[|di 2
by properties of the Euclidean norm. It follows from (5.3.28) that
2E”9k 9O 1> Z E| Kgyy, — Lot 1 [|* — 2E||d||? '
=E|(Ky—z~'LeH ™ 'F)Me, |
+ E|[[(Ky— 2 LH " F)M — LH™ 1wy~ |
—2E||d,||? "(5.3.30)

(we have used equations (5.3.26) and (5.3.27) and also the fact that {e;}
is a zero-mean sequence, independent of {w,}). .
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- Since 9eD,,
liminf E|| 9, — $,(0) > = 0.
k=

It follows from (5.3.29) and (5.3.30) that

liminf E||(Ky— 2z~ *L,H ™ *F)Me,||* = 0 (5.3.31)
k=0

and
]i[fn infE" [Ka -z~ 1L0H.— 1F)M - LgH_ IJW,‘_ 1 ”2 = 0- (5.3-32)

The ¢, are independent, zero-mean random variables such that
cov{e,} >al, keZ, for some «>0, and, in consequence, they
define a persistently exciting sequence of infinite order. We deduce
from (5.3.31) and Lemma 5.3.4 that

(Ko—z"*LyH™*F)M =0.

‘However, M(o) is invertible for some o (in fact M(0) = I). It follows

that
Koy—z 'L, H 'F=0. (5.3.33)

"But then, by (5.3.32)

liminf E||LH ™ *w,_ )% =
k=

Since {w,} isa persistently exciting sequence of infinite order we can call
upon Lemma 5.3.4again,and deducethat L,H ~! = 0. However H(o)is
invertible for some o, and we conclude that L, = 0. Equation (5.3.33)
now gives Ky =0. Recalling the definition of L, and K, we see that
Cy'Ay=C5'4, 'and C,'B,=C; !B, But Ay(0) and Cy(o) are
invertible for some ¢; it follows that

A7 1Cy=(Cy ' 4g) ™ =451 Cy
and

Ae_lBo = (A51C°Co' 1)Bo = AO—ICOCO_IBO =4y 1Bo~ O

Analogous properties of identification schemes which involve
models in state space form can be derived from Proposition 5.3.1 by
reformulation of the state-space models as ARMAX models; the

conditions on the matrices in the state-space models which must be

imposed in order that the corresponding ARMAX models satisfy the
hypotheses of Proposition 5.3.1 are essentially those appearing in
Propositions 5.1.2 and 5.1.4.
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5.4 Interpretation of identification in terms of
system approximation

The basis of consistency analysis is the hypothesis that the system is
describable within the model set. Yet, strictly speaking, imposition of

“this hypothesis is seldom justified. In typical applications the system

has a very complicated structure. One can expect of a model no more
than that it reproduces, sufficiently accurately, certain significant
features of the system. (This is not to dismiss consistency analysis: a
method which cannot select a correct model when the model set
contains the true system description is unlikely to be a good one, and
consistency analysis therefore gives us grounds for ruling out certain
methods, at the very least.)

An important issue then is behaviour of identification methods
when the model set does not include the system description. We might
hope that, in these circumstances, the model selected is a best
approximation, in some sense, to the system. This is the gist of the
following proposition. It gives conditions under which, in the limit,
the identification method supplies a model which best approximates
the system, for the given input, in the sense that the mean square
difference between predictors, §,, based on knowledge of the true
system and predictors, ,(6), based on the models, is 2 minimum.

Proposition 5.4.1
Suppose that the system which generates the data is stable and that

the models provide umformly stable predictors. Suppose also that the .

1dent1ﬁcat10n criterion VN is the least squares criterion

V() =—-— Z er(0)e(6), N=12,...,
N.&=
and the limit

1 X
W)= lim = 3. Bl 50)1%, (541

exists for every 8eD. Then
Oy—{0: W(0) = mln W)} as

PROOF By Theorem 5.2.1, 8, converges, almost. surely, into the set

D,= {0 max (hm inf - Z (E 1(0)e(6) — Eﬁk(lﬁ)sk(l//))) }

veD N-ow
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But for any feD,
. al6) =9~ 9u0) + v,
where v, =y, — P and S
 ElsHO)0)1% = El9— 5O + Elwl?,

since v, has zero mean, and is uncorrelated with 9, — 9,(6). From this
equation and from existence of the limit (5.4.1), for arbitrary e D, we
deduce that the inclusion e D, can be equivalently stated:

. 1 X .1 X :
Jim 2 3. 19— 94O < lim = 3% BN~ 9017,
for all WeD. 8, behaves then as claimed. ' . O

The hypothesis that the limit (5.4.1) exists, for each eD, is a
reasonable one when the system is time-invariant and driven by a
disturbance which is a stationary process, and when the input takes
the form of time-varying linear feedback (defined through parameters
which have limits as time tends to infinity) together with an additive
disturbance which is stationary.

We stress that the proposition states that the identification
methods, under appropriate conditions, select a model .#/(6*) which is
a best approximation to the system, in a certain natural sense, merely
for the particular input considered. It does not claim that the model
M(6%) is a good approximation for arbitrary inputs. Indeed, the
model .#(6*) and the system could be ill-matched for inputs differing
from that of the identification experiment and in consequence .#(6%)
could be quite unsuitable for the application intended. This point is
illustrated by the phenomenon of self-tuning (see Chapter 7), which
we now discuss.

The problem considered is that of identifying parameters to select a
model, with a view to designing a feedback controller which, when
applied to the system, results in as small an output variance as
possible.f We suppose that the system is descrnbable within the model
set to'the following extent:

' (a) The model set contains a model which correctly describes the

deterministic part of the system; but;
(b) The models are driven by disturbances which are not correlated,
even though the disturbances driving the system are correlated.

*Mimimum variance control is studied in Sections 7.1 and 7.3.
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Two approaches to tackling the problem suggest themselves. The
first is to separate the tasks of identification and control implement-
ation. Here, a model .#(6*) is selected on the basis of an identification
experiment in which data is obtained by applying an input suitable for
identification purposes, say a persistently exciting input, to the

system. A controller is then chosen, which is a minimum-variance.

controller with respect to #(6*), and applied to the system. The
second approach is to combine identification and control implement-
ation. Stated more precisely, the approach is to select, at time k, a
model .#(6,) on the basis of data y*, u*~!, to calculate a minimum-
variance controller for .#(6,), to implement this control to obtain
y**! and u,, and so on.

In each of these two approaches two ‘crimes’ are committed. We
implement a control which, in the first place, is designed for a model in
which the disturbances are uncorrelated when in fact the disturbances
in the system are correlated, and which, in the second place, is
designed on the basis of biased estimates of the parameters in the
deterministic part of the system. (The bias here results from a
disregard of the disturbance correlation in the system; see
Section 4.7.)

It is not surprising then that the first approach, separate identific-
ation and control implementation, typically gives rise to biased
estimates and to a control with poor properties. The second
approach, integrated identification and control, also gives rise to
biased estimates. What is, at first sight, remarkable is that the second
approach can supply, in the limit as k — o0, a control which is optimal,
in the sense that the corresponding output of the system has minimum
variance. This behaviour, cancellation .of errors from two different
sources, is the self-tuning phenomenon. -

Some light is shed on the phenomenon by Proposition 5.4.1.
Suppose that the parameter estimates 6, obtained from the second
approach converge (we write the limit d). If the control is chosen
according to a minimum variance strategy then, in the limit, §,(f) is
zero. Proposition 5.4.1 indicates that E{| 9, — 9,(8) |2 will be as small
as possible. But

El 9= 9@ =EN 9 = Ellyl* — Ellweli®.

Here the v,’s are the prediction errors based on knowledge of the true
system and do not depend on the control. Consequently the model
selected in the limit gives rise to a control strategy which minimizes

Efy.]*.
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On the other hand, Proposition 5.4.1 has little bearing on the first

approach, where the identification and control implementation .
* phases are separated. Here, according to Proposition 5.4.1, the

predictors associdted with the model M(0*) selected will be close to

those associated with the true system for the input used in the

identification experiment. However, if a control law is now selected to
make the predictors for .#(6*) zero, and if the resulting input is
different from that of the identification experiment, we can come to no
conclusions about the variance of the output for this input.

Notes

The asymptotic analysis of this chapter is limited to investigation of
subsets in parameter space into which estimates obtained from off-
line prediction error identification schemes converge in the limit as
the number -of data points tends to infinity. For purposes of
estimating confidence intervals it is desirable also to have information
about the asymptotic distributions of the estimates: a proof of
asymptotic normality of the estimates, essentially the framework of
this chapter, is given in Ljung and Caines (1979), as discussed in
Section 4.4.4. Study of the asymptotic properties of estitnates supplied
by on-line identification algorithms, which we do not enter into in this
book, is the subject of much recent research (see, e.g. Kushner and
Clarke (1978), Ljung (1977) and Solo (1979)).

The development of this chapter follows that in Ljung’s important
paper (1978). The consistency results of Section 5.3, which apply when
the model set contains a true description of the system, have
antecedents in a list of papers extending over many years on the
consistency of the maximum likelihood method, in the contexts of
independent samples, of time series analysis and of stochastic
dynamical systems. Some references to this earlier literature are
Caines (1976), Dunsmuir and Hannan (1976), Hannan ( 1973), Ljung
(1976), Wald (1949), Walker (1964) and Whittle (1961).
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CHAPTER 6

Optimal control for state-space
models

This chapter concerns optimal control problems for the state-space
models discussed in Chapters 2 and 3. The state and observation
processes x; and y, are given respectively by the equations

Xer 1 = A(R)x, + Blkuy + Clk)w, (6.0:1)
¥, = HK)x, + GR)w, (6.0.2)

where w, is ‘a white-noise sequence. We now wish to choose the
control sequence u, so that the system behaves in some desirable way.
We have to settle two questions at the outset, namely what sort of
controls are to be allowed (or, are admissible) and what the control
objective is.

The simplest class of controls is that of open-loop controls which are
just deterministic sequences uq, 4y, ..., chosen a priori. In this case the
observation equation (6.0.2) is irrclevant since the system dynamics
are entirely determined by the state equation (6.0.1). As we shall see in
Section 6.1, open-loop controls are in some sense adequate for non-
stochastic problems (w, = 0). Generally, however, it is better to use
some form of feedback control.Such a controlselects a value of u, on the
basis of measurements or observations of the system. We have
complete observations if the state vector x, can be measured directly,
and, since the future evolution of the system depends only on its
current state and future controls and noise, the natural form of
control is then state feedback: u;, = u,(x;). The functions u,(*), u,(?),..
are sometimes described as a control policy since they constitute a
decision rule: if the state at time k is x, then the control applied will be
u = u,(x). Again, the observations y, are irrelevant in this situation. In
the case of noisy measurements or partial observations, however, x,:
cannot be measured directly and only the sequence yg, ¥y,..., Vi 18
available. Feedback control now means that u, is determined on the

247
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basis of the available measurements: u, = u,(y,, y; .. ., ). In this case,
since y, is not the state of the system, one generally does better by
allowing dependence on all past observations, not just-on the current
observation y,. Finally, we shall assume throughout that the contwmel
values are unconstrained. It would be perhaps more realistic to

restrict the values of the controls by introducing constraints of the |

form Ju/ < 1. While this causes no theoretical difficulties, it would
make the calculation of explicit control policies substantially more
difficult. .

We now turn to the control objective. In classical control system
‘design the objectives are qualitative in nature: one specifies certain
stability and transient response characteristics, and any design which
meets the specification will be regarded as satisfactory. The ‘pole
shifting’ controllers considered in Chapter 7 follow this general
philosophy. Here, however, our formulation is in terms of optimal
control. The idea is as follows: the class of admissible controls is
specified precisely and a scalar performance criterion or cost function
C(u) is associated with each control. We can then ask which control
achieves the minimum cost; this control is optimal. Once the three
ingredients (system dynamics, admissible controls and cost criterion)
are specified, determination of the optimal control is in principle a
purely mathematical problem involving no ‘engineering judgement’,
Indeed, optimal control theory has often been criticized precisely on
these grounds. It may well be that a control which is theoretically
optimal is subjectively quite unsatisfactory. If it is, this will be because
the system model is inadequate or because the cost criterion fails to
take account of all the relevant features of the problem. On the other
hand, a more realistic model or a criterion which did include all the
relevant features might well lead to an impossibly complicated
optimization problem. As usual, the true situation is a trade-off
between realistic modelling and mathematical tractability, and this is
where the engineering judgement comes in.

In this chapter we shall study linear regulator problems, where the
cost criterion is given by '

N—-1
2
K=

| Dx; + Fu, |2 + x}',QxN:,. (6.0.3)
0 ,

CN(u) = E [
The number N of stages in the problem is called the time horizon and
we shall consider both the finite-horizon (N < o) and infinite-
horizon (N = o) cases. Further discussion of the cost function Cr(u)
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will be found in Section 6.1. It implies a general control objective of

regulating the state x, to 0 while not using too much control energy as

measured by the quantity uf F*Fu,. Note that the quantity in square

brackets in (6.0.3) is a random variable and we obtain a scalar cost -
function (as required for optimization) by taking its expected value,

which is practical terms means that we are looking for a control policy
which gives the minimum average cost over a long sequence of trials.
Theoptimization problem represented by equations (6.0.1)-(6.0.3)is

known as the LQG problem since it involves a linear system (6.0.1), .

(6.0.2), a quadratic cost criterion (6.0.3) and gaussian or normal white-
noise disturbances in the state-space model. (For reasons explained
below, {w,} is assumed here to be a sequence of independent normal
random variables rather than a ‘wide-sense’ white noise as generally
considered in previous chapters.) It is sufficiently general to be
applicable in a wide variety of cases and the optimal control is
obtained in an easily implemented form. It also has, as we shall see,
close relations with the Kalman filter.

In addition to: the standard linear regulator as defined above we
shall study the same problem with discounted costs;

N~1
C*u) = E[ Y Pl Dxy + Fu, llzl{—/)Nx,TquN:I
K=t

- where pis a number, 0 < p < 1. There are important technical reasons

for introducing the discount factor p, but there is also a financial

_ aspect to it. Su’ppose that money can be invested at a constant

interest rate r, per annum and one has to pay bills of £a4, £4,,...
each year starting at the present time. What capital is needed to
finance these bills entirely out of investment income? Since £1 now is
worth £(1 +0.017)* in k years’ time, the amount required is Y, a;p*

‘where p=(1+0.017)"! and this is one’s total debt capitalized at its

present value. In particular, a constant debt of £a/year in perpetuity
can be financed with a capital of

]
£ apt=£a/(1 - p).
k=0 :

i

An important feature of this result is that while the total amount of

debt is certainly infinite, it nevertheless has a finite capital value. -

Similarly, in the control problems, the discount factor enables us to

.attach a finite cost (and therefore consider optimization) in cases

where without discounting the cost would be + oo for all control
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policies. Of course it is not realistic to assume that interest rates will
remain constant for all time, and a more subjective interpretation of
C*(u) is simply to say that it attaches small importance to costs which
have to be paid at some time in the distant future.

In the three sections of this chapter we discuss the linear regulator
problem in three stages. First, in Section 6.1 we consider the
deterministic case when w, = 0. Many of the ‘structural features’ of the
LQG problem are already present in this case, and the optimal
control turns out to be linear feedback: u, = — M(k)x, for a precom-
putable sequence of matrices M(k). This same control is shown in
Section 6.2 to be optimal also in the stochastic case with complete
observations, the effect of the noise being simply to increase the cost.
Finally we consider the ‘full’ LQG problem in Section 6.3 and show
that the optimal control is now — M(k)%,, _, where %, _, is the best
estimate of the state given the observations, generated by the Kalman
filter. This results demonstrates the so-called ‘certainty-equivalence’
principle: if the state cannot be observed directly, estimate it and use
the estimate as if it were the tru¢ state. We also discuss an idea of
somewhat wider applicability known as the ‘separation principle’.

6.1 The deterministic linear regulator

6.1.1 Finite time horizon
In this section we consider control of the linear system
X 41 = A(K)x, + B(k)u, ' (6.1.1)

fork=0,1,..., Nwithagiveninitial condition x,. We wish tochoose a
control sequence u = (g, U;,...,Uy-) SO as to minimize the cost’ -

N—
Jy(u) = r;ol | D(k)x; + F(k)yug || + xx Qxp. (6.1.2)

Here D(k), F(k) are matrices of dimensions p x n, p X m respectively
and Q is a non-negative definite symmetric n x n matrix. It will
be assumed throughout that the m x m matrices FY(k)F(k) are strictly
positive definite, which implies in particular that we must have p = m.

We shall also study various infinite-time problems related to
(6.1.1)~(6.1.2), i.e. consider what happens as N —co.

tWe denote the cost by Jy in the deterministic case, reserving Cy for the average cost in
the stochastic problem.
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The cost function J N(u) is somewhat different from that convention-
ally employed in treatments of this subject. The more usual form of
cost function is ‘

N=1
Tn(w) = ki/:o (e Qk)x;, + ug R(k)uy) + xx Oxy {

where Q(k), R(k) are symmetric non-negative definite matrices (strictly
positive definite in the case of R(k)). This has more intuitive appeal
since the terms involving x, penalize deviation of x, from O while
Zuf R(k)u, is a measure of control energy. Thus the control problem is
to steer x, to zero as quickly as possible without expending too much
control energy; energy expenditure can be penalized more or less
heavily by appropriate specification of the matrices R(k). This cost
function is, however, a special case of (6.1.2): take p=n+m and

1/2 ' 0

where Q/2(k), RY/?(k) are any ‘square roots’ of Q(k), R(k), i.e. satisfy
(012(k))TQ/2(k) = Q(k) (and similarly for R/2(k)). Such square roots
always exist for non-negative definite symmetric matrices, as shown
in Appendix D, Proposition D.1.3.

We prefer the cost function (6.1.2) because of its extra generality,
but more importantly because it connects up naturally with the
formulation of the Kalman filter glven in Chapter 3. This will become
apparent below.

The control problem (6.1.1)—(6.1.2) can in principle be regarded as
an unconstrained minimization problem. For a given sequence
u=(Ug,Uy,...,uUy_,) and initial condition x,, the corresponding x,
sequence can be computed from the state equations (6.1.1):

= A(0)xo -+ BO)u,
x, = A(1)x, + B(1)u,
= A(1)A(0)xo + A(1)B(O)uo + B(1)u,, etc.

Substituting in (6.1.2), we obtain Jy(u) explicitly as a function of
the mN-vector u=col{uy,uy,..,uy_,} and one could now use
‘standard’ hill-climbing techniques to find the vector u* which
minimizes Jy(u). This would, however, be a very unsatisfactory way of
solving the problem. Not only is the dimension mN very large even for
innocuous-looking problems but also we have thrown away an
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essential feature of the problem, namely its dynamic structure, and
therefore calculation of the optimal u* would give us very little insight
into what is really happening in the optimization process.

A solution method which uses in an essential way the dynamic
" nature of the problem is R. Bellman’s technique of dynamic pro-

gramming. Introduced by Bellman in the mid-1950s, dynamic

programming has been the subject of extensive research over the
years and the associated literature is now enormous. We propose to
discuss it here only to the extent necessary to solve the problem at

hand. The basic idea is, like many good ideas, remarkably simple, and-

is known as Bellman’s principle of optimality. Suppose that u* is an
optimal control for the linear regulator problem (6.1.1)—(6.1.2), that is
to say,

In(*) < Jy(u)

for all other controls u = (ug,uy,...,uy ). Let x§ = xo, x¥,..., x¥ be
the corresponding state trajectory given by (6.1.1) with u, = uf. Now
fix an integer j, 0 < j < N, and consider the ‘intermediate’ problem of
minimizing ,

N—-1
Ty fu?) = Z 1D(k)x, + F(R)iy [ + x @xy

over controls u" = (uj,Uj4 1,..., Uy~ 1), subject to the dynamlcs (61 1)
as before with the mmal condxtlon

v — vk
X;=Xx}.

The intermediate problem is thus to optimize the performance of
the system over the last N — j stages, starting at a point x¥ which
is on the optimal trajectory for the overall optimization problem.
The principle of optimality states that -the control u*¥ =
(Wr,uly(,...,uf~y) is optimal for the intermediate problem. Put
another way, if u* is optimal for the overall problem then u*\ is
optimal over the last N — j stages starting at x}. The reason for this is
fairly clear: if u*Y were not optimal for the intermediate problem then
there would be some sequence & = (i}, ;4. 1,..., iy -1) such that

JN’j(a(J)) < JN,j(u*(J)).

Now consider the control u° defined as follows: : -

o Juk k<j
up = .
[ k=j
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and let x{ be the corresponding trajectory. Then x{ = x# for k < jand

hence

Iy =5 IDOE + FOEI + Jy )

Z D(k)x¥ + F(kyug||* + Jy, (u*“’)

= J (). - (613)

But this contradicts the supposition that u* is optimal. Thus u*¥
must be optimal for the intermediate problem, as claimed.

In the preceding argument, the system started in a fixed but
arbitrary state x,. However, there is nothing special about the
initial time zero: the same argument implies that if {x, u}, k> j} is
an optimal control-trajectory sequence for the intermediate problem
starting at x; = x (arbitrary) then {x},u}, k>j} is optimal for the
further mtermedxate problem starting at x; = x% for any j’ between j
and N — 1.

The principle of optimality is turned into a practical solution
technique as follows. Let Vi(x) be the minimum cost for the
intermediate problem starting at x; = x. This is known as the value

Jfunction at time j. Then taking j'=j+ I, the above argument

indicates that V; ought to satisfy

Vi(x) = min [[D()x + FGll* + V. ((AG)x + B()v)]  (6.1.4)
the minimum being taken over all m-vectors v. Essentially, this comes
from calculations similar to (6.1.3) above. If x; = x and control u =0
is applied, then:
(a) The cost paid at time j is | D(j)x + F(j)v ||
(b) The next state is x;, ; = A(j)x + B(j)v.
Thus V;, (A()x + B(j)v) is the minimal cost for the rest of the
problem if control value v is applied at stage j. So certainly

Vix) < ID(x + F(o Il + Vi ((AG)x + BG)r)  (6.1.5)

and this holds for any value of v. On the other hand, if {x},u}} is
optimal over the last N — j stages starting at x} = x, then the principle
of optimality indicates that

Vixt) = Z I D(k)xi +F(k)u 12 + x¥T Qx%
k=1
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where [ is either j or j+ 1, and this shows since x} = x that
Vi(x)= IDG)x + FOUEI + Vi (AG + BOD).  (6.16)

Now (6.1.5) and (6.1.6) together imply that (6.1.4) holds.

Equation (6.1.4) is known as the Bellman equation and is the basic
entity in discrete-time dynamic programming since it enables the
optimal control u* to be determined. Note that at the terminal time N
the value function is

Va(x) = xTQx, 6.1.7)

since no further control is possible and one has no choice but to pay
the terminal cost of x"Qx. Applying (6.1.4) with j =N — 1 gives

Vi-1(x) = min[| D(N — 1)x + F(N — ol|?
+ (AN = 1)x + B(N — 1)0)TQ(A(N — 1)x + B(N ~ 1)0)]

and hence determines Vy_,(x). Now using (6.1.4) again we can cal-
culate Vyy_,, Vy_3,..., Vo. By definition, V,(x,) is then the minimal
costfor the overall problemsstarting atstate x,. From(6.1.5)and (6.1.6),
the optimal control u¥isjust the value of v that achieves the minimumin
(6.1.4) with x = x¥. o
Before proceeding any further let us consolidate the discussion so far.
We have used the principle of optimality to obtain the Bellman
equation (6.1.4) and this suggests the procedure outlined above for
obtaining an optimal control. Having arrived at this procedure,
however, we can verify that it is correct by a simple and self-contained
argument; this will be given below. Thus the principle of optimality is
actually only a heuristic device which tells us why we would expect the
Bellmanequation to take the form it does; it does not appearin the final
“formulation of any results. One could present the theory without
mentioning the principle of optimality at all, but this would involve
pulling the Bellman equation out of the hat, and readers would be left
wondering ~ at least, we hope they would be left wondering — where it
came from.

Theorem 6.1.1 (Verification theorem)

Suppose Vy_,(x), Vy- 2(x),...,Vo(x) satisfy the Bellman equation
(6.1.4) with terminal condition (6.1.7). Suppose that the minimum in
(6.1.4) is achieved at v =u?(x), i.e.
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ID()x + F(ud (x) 12 + V4 1(AU)x + BU)u? (x))
< |DG)x + Fi)oll® + Vix 1(AG)x + B(j)v)
for all m-vectors v Now define (xf, uf) recursivély as follows:
X& =xg : (6.1.8)
— 450f % '
x;’f _ 2";;"1 Bu,’f} k=0,1,...,N—L (6.1.9)

Then u* = (u¥,...,u%_,) is an optimal control and the minimum cost
is Vo(xo)-

PROOF Let u = (uy,...,Uy—,) be any control and X,,...,xy the
corresponding trajectory, always with the same initial point x,. Then
from (6.1.4) we have

Vj(x_'lﬁ)S IDG)x; + F(usl® + Vi a(xj40). (6.1.10)

Py
Hence ) /
. .
N -—

Va(xn) = Volxo) = Zl (Ves 1064 1) — Vidxi))

N-1 . )
Z - kZO IDG)x; + F(huyll2. (6.1.11)
Since Vy(xy) = xyQxy this shows that
Vo(Xo) < J n(u). (6.1.12)

On the other hand, by definition, equality holdsin (6.1.10) and hence in
(6.1.11) when x; = x¥, u; = uf, so that

Vo(xo) = Jn(u™). (6.1.13)
Now (6.1.12),(6.1.13) say that u* isoptimal and that the minimal cost is
Vo(Xo)- v O

Two remarks are in order at this point:
1. Notethat the optimal controlis obtainedin feedback form,i.e. xi
is generated by

Xty = AG)xE + BOUS(xE)

where ud(+)isa pre-determinéa function. (See Fig. 6.1(a).) One could in
principle obtain the same cost V(x,) by calculating the u} sequence

" LM.E.C.C.
BIBLIOTEC A
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£ * *
System =X, yS—> System X,

(b)
Gl

{a)
Fig. 6.1 (a) Feedback control; (b) Open loop control.

explicitlyandapplyingitinopenloop(Fig. 6.1(b)) butsuchaprocedure

has serious disadvantages. Using the dynamic programming appro-
ach, we haveinfactnot onlysolved the original overall control problem
but have solved all the intermediate problems as well: an argument
identical to that given above shows that the control u} generated by
(6.1.9) with any initial condition x¥* = x is optimal for the control
problem over the last N — j stages starting at x; = x. Thus if for some
reason the system gets ‘off course’ the feedback controller continues to
actoptimallyfor theremainingstages ofcontrol. On the other hand, the
values ujf calculated for the open-loop control of Fig. 6.1(b) are based
onaspecificstarting point x, andif thisiserroneous orifanerror occurs
at some intermediate point then the u¥ sequence will no longer be
optimal. .

2. Nothing so far depends on the quadratic nature of the cost
function (6.1.2). Similar results would be obtained for any scalar cost
function of the form

-1
()= Nz %) + 95, (6.1.14)

" We have seen above that the basicstep in solving the optimal control
problem is to calculate the value functions Vy_(x),..., Vy(x). With

general cost functions J'(u) as in (6.1.14) this involves an immense .

amount of work since the whole function V(-) has to be calculated and
not just the value V,(x) at some specific point x. The advantage of the
quadratic cost (6.1.2) is that the value functions take a simple
parametric form and can be computed in an efficient way. Indeed, the
value functions are themselves quadratic forms, as the following
result shows. :
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T'heorem 6.1.2

The solution of the Bellman equation (6.1.4), (6.1.7) for the linear

regular problem (6.1.1), (6.1.2) is given by

V) =x"St)x  k=0,1,...,N (6.1.15)

where S(0),...,S(N) are symmetric non-negative definite matrices
defined by (6.1.20) below. The optimal feedback control is

uj(x)=— M(j)x

where -
M(j)=[B"()SG + 1)BG) + FT(HF ()]~

‘[BT()SG + DAG) + FTG)D(j)]. (6.1.16)

We see that the optimal controller has a very simple structure, '
“namely linear feedback of the state variables. The notation uj for

optimal control is used for consistency with the discounted cost case
to be discussed below.

PROOF Note that the result is certainly true at k = N since Vy(x) =
xTQx. To show that it holds for k < N we use backwards induction:
supposing (6.1.15) holds for k =j + 1 we show that it holds for k =
Taking ¥}, 1(x) = xTS(j + 1)x, the Bellman equation (6.1.4) becomes

V{x) = mvin LID()x + F(j)vl? + (xTAT(j) + v"BT(j))
-G + D(AG)x + B())]. (6.1.17)

- The quantity in square brackets on the right-hand side is equal to

oT(BTS(j + 1)B + FTF)o + 2xT(A™S(j + 1)B + D™F)v
+ xT(ATS(j + 1)4 + D*D)x C (6.1.18)

where we tempbrarily write B(j) = B, etc. Now if R is a symmetric
positive definite matrix and a an m-vector then

(v +a)"R(v + a) = v"Rv + 2a"Rv + a"Ra
ie. .
v"Rv +2a"Rv = (v + a)"R(v + a) — a"Ra.

Clearly this expression is minimized over v at v= —a and the
minimum value is — a"Ra. In order to identify this with the first two

AN N TN N N N Y
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terms in (6.1.18) we require
R=B"S(j+ 1)B+ F'F
Ra=(B"S(j + 1)A + F'D)x.
Now by assumption FTF, and hence R, is strictly positive definite, and
therefore a is specified by
a=R™YB"S(j + 1)4 + F'D)x.

Thus the right-hand side of (6.1.17) is equal to

xT[ATS(j + 1)A + D™D — (ATS(j + 1)B + DF)

R™YB™S(j+ 1)A + F™D)]x. (6.1.19)
Hence V(x) = x"S(j)x where S(j) is given by the expression in the
square brackets in (6.1.19) and S(j) =0 by (6.1.17). Thus V(x) is a
quadratic form, as in (6.1.15), for all k=0,1,...,N. Note from the
above analysis (specifically from (6.1.19)) that the matrices S(k) can be
computed recursively backwards in time starting with S(N)= Q. In
fact, writing out (6.1.19) in full we see that the S(k) are generated by
SN)=Q . ‘
- S(j) = AT(DS + DA) + DT(HD()) — (AT(NS( + 1)B(j)
+ DT()F()BT(NS( + DB() + FT(HF() ™
“(BT()S( + DAQ) + FT()D()) }

j=N-1L,N-2,..,0. (6.1.20)

Applying the dynamic programming results, the optimal feedback

control is the value of v that achieves the minimum in (6.1.16), and this

is equal to — a, so that
ul(x)= —[BT()S( + DB() + FT(HF(N1™*
-[BT()S(j + DA) + FT(HD()]x. ,
This completes the proof. o 0O

Filtering|control duality

A very important feature of the above result is its close connection to
~'the Kalman filter discussed in Section 3.3. Equation (6.1.20) is a
Riccati equation of exactly the same type as that appearing in the
Kalman filter equations, with the distinction that (6.1.20) evolves
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backwards from a terminal condition at time N whereas the filtering
Riccati equation (3.3.6) for the estimation error covariance P(j)
evolves forward from an initial condition at j = 0. The Kalman gain
K(j) is related to P(j) in exactly the same way that the control gain
M(j) is related to S(j), except for transposition. Specifically, the
correspondence between the two problems is as shown in Table 6.1.

Table 6.1

Filtering Control -
(time) j N—j

A(J) AT(j)

H(j) B'(j)

C()) D(j)

G0 F(j)

P(j) S(j)

K(j) - M'(j)

This means that if we take the filtering Riccati equation (3.3.6), make
the time substitution j— N —j and relabel 4, H, C,Gas AT, BY, DT, F"
respectively, then we get precisely (6.1.20). The same relabelling
applied to the expression (3.3.5) for K(j) produces MT(j). Thus the
Riccati equations (6.1.20) and (3.3.6) are the same in all but notation.
This will be very important when we come to consider various
properties of the Riccati equation, since its solution can be regarded
interchangeably as the value function for a control problem or the
error covariance for a filtering problem, and various facts can be
deduced from one or other of these interpretations.

Discounted costs
Let us now specialize to the time-invariant system

Xp41 = Ax, + By, 6.1.21)
(i.e. A(k) = A, B(k) = Bforall k)and consider minimizing a discounted

cost of the form

N-1
J) =Y. p*IDx+ Ful® + Vx5 Qxx (6.1.22)
: K=0 o -
where D,F,Q are fixed matrices and p is the discount factor
(0 < p < 1). Thisisactuallyaspecial case ofthepreceding problem (take
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D(k) = p*2D, F(k) = p**F and replace Q by p"Q); but there is another
way of looking at it which provides a little more insight. Write

N—-1
T T, pHIDx+ Pl + g 0

N-1 :
= Zo IDp 2%, + FpHuy|1* + pMxy Qxn
&

N-1
=Y |Dxg+ Fug||? +x4T0x4 (6.1.23)
K=0
where we have defined
xg:= pM%x,
ul:= p*2y,, (6.1.24)

Multiplying (6.1.21) by pUt 12 gives .

p(k+ 1)/2xk+ s p1/2Apk]2xk + pl/ZBkaZuk
ie.
x0, = APx} + Buf (6.1.25)
where A?:= p'/2A, B*: = p*/*B. But (6.1.23)(6.1.25) constitute a time-
invariant linear regulator problem in standard non-discounted form.
The optimal control is therefore

uf = — (BPSP(k + 1)BP + FTF)™}(BPTSP(k + 1)4° + FTD)xt
= — MP(K)xE .
where S(k) is the solution of (6.1.20) with A4 replaced by p2A and B

replaced by p'/>B. In view of (6.1.24) the optimal control u is
expressed in terms of the ‘real’ state x, by

u, = — MP(k)x,.

Thus the discounted cost problem is solved simply by taking the
undiscounted problem and making the substitutions A4-— pt2A4,
B—p'?B,

6.1.2 Infinite-time problems

In this section we will continue to assume that the system and costs
are time-invariant, i.e. the matrices 4, B, D, F do not depend on the
time, k. .

In many control problems no specific terminal time N is-involved
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and one wishes the system to have good ‘long-run’ performance. This
suggests replacing (6.1.2) by a cost '

Jo)= 3 IDx, + Fu|%. (6.1.26)

It is not obvious that the problem of minimizing J () subject to

the dynamics (6.1.1) makes sense: it might be the case that J ,(u) =
+ oo for all controls u. Note, however, that the problem does make
sense as long as there is at least one control u such that J (1) < c0. A
simple sufficient condition for this is that the pair (4, B) be stabilizable,
i.e. there exists an m x nmatrix M such that 4 — BM is stable. Taking
for u the feedback control %, = — Mx,, the system dynamics become

Xk+1 =(4 — BM)x,.

.Now since 4 — BM is stable, it follows from Proposition D.3.1,

Appendix D; that there exist constants ¢ >0 and ae(0, 1) such that
i [l < ca*ll xo

Since [|(D — FM)x| < K| x|l for some constant K, the cost using
control # is

Ju@)= 3 10— FMI?

<K? ) Ixd?
k=0

<K xol? Y a?*
k=0
= 2K xo I1*/(1 — @?).

Thus with any stabilizing control, the norm of x, decays sufficiently
fast to give a finite total cost. We will therefore assume henceforth that
the pair (4, B) is stabilizable. ) ’

If ¥(x) is the value function at time k for the infinite-time problem
then it seems likely that ¥} does not actually depend on £, since, there
being no ‘time horizon’ and the coefficients being time-invariant, the
problem facing the controller is the same at time k as at time zero,
except for some change in the initial state. Recalling the Bellman
equation (6.1.4), this suggests that the value function V = ¥, should
satisfy

V(x) =min[||Dx + Fv||* + V(Ax + Bv)]. (6.1.27)
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Note this is no longer a recursion but is an implicit equation which
may or may not be satisfied by a particular function V.

Proposition 6.1.3

Suppose that ¥ is a solution of (6.1.27) such that V is continuous and
¥(0) = 0,! and that u*(x) achieves the minimum on the right, i.e. for all
vectors v, '
| Dx + Ful(x)||? + V(Ax + Bu*(x)) < [ Dx + Fv||* + V(Ax + Bv).
Suppose also that u' is a stabilizing control in the sense that || x, ||
—0 as k— oo, where x, is the trajectory corresponding to u', ie.
Xp+1 = Ax, + But(x,).

Then u*(x) is optimal in the class of stabilizing controls. Equation
(6.1.27) has the quadratic solution V(x) = xTSx if and only if S satisfies
the algebraic Riccati equation (6.1.29) below, and in this case the
corresponding control is
ul(x)= — Mx
where
M =(B'SB + F'F)"}(B"SA + F'D) (6.1.28)

PROOF Let {x,,%,} be any control/trajectory pair such that | x, I
—0as k— oo and write

. N-—-
Vi) = Viso)= 5, Viraei) = Vi

N-1 :
> Y |IDx,+ Ful*>  (from (6.1.27)).
0
Thus
N-—1 ,
Vo)< T D%+ Fin + Vo).
Now by the assumptions on ¥ and x;, V(xy)—0 as N — co and hence

V(xo) < kZO 1D + Fuy||* = J o(w).

The same calculations hold with = replacing > when u = u!, and this

- 1A natural requirement since if x = 0 the control u, =0 is plainly optimal.
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shows that
V(xo) = J o(u') = min J (u).

Thus u! is optimal in the class of stabilizing controls (those for which
lIx,)l =0 as k— o0, x, being the corresponding trajectory.)

Since the value function for the finite-horizon problem is a
quadratic form, let us try a solution to (6.1.27) of the form xTSx where
S is a symmetric non-negative definite matrix. From (6.1.19), the

‘minimum value on the right of (6.1.27) is then

XT[ATSA + D™D — (A"SB + DTF)(B"SB + F*F)"Y(B"SA + F'D)]x

and V(x)=xTSx is therefore a solution of (6.1.27) if and only if S
satisfies the so-called algebraic Riccati equation (ARE):

S = ATSA + D™D — (ATSB -+ DYF)(B"SB + F'F)~'(B'SA + F'D).
' , (6.1.29)

If S satisfies this then certainly V(x)=xTSx is continuous and
V(0) = 0. The corresponding minimizing »* is given as before by

u'(x)= — Mx
where :
M =(B"SB + FTF)"Y(B"SA + F'D). =

If the matrix A — BM is stable then |x,[| =0 as k— co where
xk+1 = Axk + Bul(xk) = (A - BM)xk.

The above proof thus shows that if S satisfies (6.1.29) and 4 —BM is
stable then the control u'(x,) = — Mx, is optimal in the class of all
stabilizing controls. An important feature of this result is that the
optimal control is time-invariant (does not depend explicitly on k),
although time varying controls are not in principle excluded.

It is evident from Proposition 6.1.3 that the infinite time problem
hinges on properties of the algcbraic Riccati equation. These are
somewhat technical and a full account will be found in Appendix B.
Let us summarize the main results. The conditions required on the
coefficient matrices 4, B, D, F are as follows:

(a) The pair (4, B) is stabilizable.

(b) The pair (D, 4) is detectable, where ‘ (6.1.30)
A=A—B(FTF)7'F™D '
D =[I—F(F'F)~'F"]D.
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The first of these conditions is a natural one since, as remarked before,
it ensures the existence of at least one control giving finite cost. The
motivation for condition (b) is less obvious, though it does seem clear
that some condition involving D and F, in particular concerning the
‘relation between states x, and ‘output’ Dx,, is required to justify
limiting attention to stabilizing controls. Condition (b) takes the
simpler form

(v") (D, A) is detectable,

whén FTD = 0; this is the case alluded to at the beginniﬁg of this
section, in which the cost takes the form

IDx, + Fuy||> = x; DTDx, + uy F'Fu.

Under conditions (6.1.30), the argument given in Appendix B shows
that there is a unique non-negative definite matrix § satisfying the

algebraic Riccati equation, that A — BM is stable, where M is givenby

(6.1.28), and that the control u'(x,) = — Mx, is optimal in the sense of
minimizing J («) over all control-trajectory pairs (x;, ) satisfying
the dynamic equation (6.1.1). (The less precise argument summarized
in Proposition 6.1.3 only shows that u'(x) minimizes J (1) over allsuch
pairs satisfying ||x,|| =0 as k— 00.)

The relation between the finite and infinite-time problems is also
clucidated in Appendix B. In fact it is shown that under conditions (a)

and (b),
and (0 S = lim S(— k) ‘ (6.1.31)

k= o0

where S(— 1), S(— 2),... is the sequence of matrices produced by the
Riccati equation (6.1.19) with S(0) = Q where @ is an arbitrary non-
negative definite matrix. Now x"S(— k)x is the minimal cost for the k-
stage control problem (6.1.1)-(6.1.2) with terminal cost x§ Ox,. Inview
of (6.1.31) we see that as the time horizon recedes to infinity, the cost of
the finite-horizon problem approaches that of the infinite horizon
problem, whatever the terminal cost matrix Q. Q is unimportant
because || x, || will be very small for large k when the optimal control is
applied.

Generally, in the finite-horizon case, the optimal control u, =
— M(k)x, is time-varying. If, howcver, onc selects Q=S as the
terminal cost, where S satisfies the algebraic Riccati equation, then
S(k) =S for all k, so that the time-invariant control u, = — Mx, is
optimal, and this is the same control that is optimal for the infinite-
horizon problem. The situation is somewhat analogous to that of a
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transmission line terminated by a matched impedance. With this

termination the line is indistinguishable from one of infinite length. In -

the control case, if the terminal cost is xJSx, the controller is

indifferent between paying it and stopping, or continuing optimally
ad infinitum. In either case the total cost is the same, so it is reasonable '
_to describe S as the ‘matched’ terminal cost matrix.

Finally, let us consider the infinite-time discounted cost problem,
where the cost function is

Jo )= kZO P IDx; + Fuyl|®.

Proceeding exactly as in the finite-horizon discounted case, we
conclude that the optimal control is

uf(x) = — M*x,.
Here ) '
M? =(B°"S?B? + FTF)™ {(B*TSPA? + F'D)
and S” is the solution of the algebraic Riccati equation with 4 and B

replaced by A” and B” respectively, where -

CAP=pl?4, Br=p'?B.
The conditions for existence of a solution S” to the modified equation
are the appropriately modified version of (6.1.30) above, namely

(c) (4, B} is stabilizable.

(d) (D, A7) is detectable (47 = p'2A). (6.1.32)

Note that if U is any n x n matrix with eigenvalues 1,,..., 4, then the
eigenvalues of p'/2U are p*/?A,,..., p'/*4, since if x; is an eigenvector
corresponding to 4; then

p1/2 Uxi = pl/zﬂ.ix,-. (6-1.33)
Thus A” — B’M = p'/*(4 — BM) is stable if A—BM is stable.

Similarly A? — (p"/>N)D = p'/*(A — ND) is stablc if 4 — ND is stable.

Thus conditions (6.1.30) imply conditions (6.1.32), so that S exists for
any p < 1 if conditions (6.1.30) are satisfied. However, taking U = 4
and U = 4 in(6.1.33) we see that, for sufficiently small p, A” and A are
both stable and, a fortiori, (A?, B?) and (D, A*) are stabilizable and
detectable respectively. Thus an optimal solution to the discounted
cost infinite-time problem always exists if the discount factor p
sufficiently small. An optimal control with finite cost can, however, be
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obtained without discounting if the rather mild conditions (6.1.30) are
met. This contrasts with the situation in the stochastic case consi-
dered in the next section, where discounting is always necessary to
obtain finite costs in infinite-time problems. ,

This concludes our discussion of the deterministic optimal regu-
lator problem. We need if as a stepping-stone to the stochastic case
and also to isolate the duality relationships which connect the Riccati
equations which arise here and in the Kalman filter. In Appendix B,
the asymptotic behaviour of the Riccati equation is investigated by
methods which rely heavily on its control-theoretic interpretation.
But, thanks to the duality properties, these results apply equally to tell
us something about asymptotic behaviour of the estimation error in

the Kalman filter.

In recent years, techniques based on the linear/quadratic optimal
regulator have become an important component of multivariable
control system design methodology. It is outside the scope of this

book to discuss such questions, but some references will be found in' -

the Notes and References at the end of this chapter. The essential
advantage of the linear/quadratic framework in this connection is
that arbitrary dimensions m and p of input u, and output Dx, are
allowed, whereas techniques which attempt to generalize the classical
single-input, single-output methods are seriously complicated by the
combinatorial fact that there are rp transfer functions to consider, one
from each input to each output. A subsidiary advantage of the
linear/quadratic framework is that time-varying systems are handled
with relative ease. -

6.2 The stochastic linear regulator

In this section we consider problems of optimal regulation when the

state equation includes additive noise, as in the state-space stochastic .

model discussed in Section 2.4. Thus x, satisfies

Xy 41 = A()x, + By, + C(k)w, 6.2.1)

where {w, } is a sequence of [-vector random variables with mean 0 and
covariance I. We will assume in this section that w, and w; are
independent (rather than merely uncorrelated) for k = j. The initial

state x, is a random vector independent of w, with mean and

covariance m,, P, respectively. We suppose that the state x; can be

.measured directly by the controller, so that controls will be feedback
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functions of the form u, = u,(x,). The objective is to minimize the cost
criterion

%

Calw) = E[z 1D(k)x, + FlRyu? + xmxn].

The value function W{(x) at time j for this problem is the minimum
value of

Ej. [Zz 1D(x, + F(uyll? + xﬁQxN}

where E, , denotes the expectation given that the process starts off at
xj=x (a fixed vector in R"). If x; =x and the control value u;=v is
applied then the next state is

Xj41 = A(j)x + B(j)v + C(j)w;

and, by definition, the minimal remaining cost for the rest of the
problem from time j + 1 to N is W;..4(x;+ ). This, however, is now a
random variable since ;.  is determined partly by w;. The expected
minimal remaining cost is obtained by averaging this over the
distribution of w, giving a value of

EW; . 1(A(j)x + B(j)v + C(j)w)-

Thus the minimum expected cost starting at x; = x, if control u; = v is
used, is the sum of this and the cost | D(j)x + F(j)v||* paid at time j.
This suggests that Wj{x) should satisfy the stochastic Bellman
equation

Wix) = mvin[ ID()x + F(j)oli + EW,. 1(A(j)x + B(j + C(jw))]
: ' (62.2)

where again E means averaging over the distribution of w; with x, v
fixed. At the final time N no further control or noise enters the system,
so that

Wi(x) = x"Qx. ' (6.2.3)

As before, (6.2.2)-(6.2.3) determine a sequence of functions
Wy, W1, .., W, by backwards recursion. And, also as before, we do
not rely on the above heuristic argument to conclude that these -
functions are indeed the value functions for the control problem, but
provide independent direct verification. : '
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Proposition 62.1

Suppose that Wy, ..., W, ate given by (6.2.2), (6.2.3) and that u; O(x) is
the value of v that achxeves the minimum in (6.2.2). Then the feedback

“control uf = u;(x,) minimizes the cost Cy(u) over the class of all
feedback control policies.

PROOF Let u,(x,) be an arbitrary feedback control and let x, be the
process given by (6.2.1) with uy, = u,(x,). Then

Wilxy) — Wo(xo) = 2 (Wit 1% 1) — Wilx)

so that
EDWh )~ o)1 = %, ELWis(ser) = WG] (629

In calculating the expectatioris on the right we are entitled to
introduce any intermediate conditional expectation. We therefore
write

!

E[Wy i 1(Xe41) — Wilxd] = E{E[Wk+1(xk+1) - Wk(xk)lxk]}-
: (6.2.5)

Now, given x;, W(x,) is known and x, ., is given by
Xi+1 = A(R)x, + Bk)u(x,) + Clk)wy.

The first two terms on the right are known and the third is a random
vector independent of x,. The conditional expectation of Wi, ;(X+1)
is therefore given by

E[W, 4 1(xx+ 1)Ixi] = EW i 1(AR)x, + Blk)uy(x,) + C(k)wy)

where the expectation on the right is taken over the distribution of w
for fixed x,. Now, using (6.2.2) we obtain

E[Weq 1(%e+ 1) — Wilxo) %] = EWpei 1(A(K)x, + Bk)uy(x,)
+ C(k)w) — W(x,)
> — || D(k)x, + F(Ru(x) 1. (6.2.6)
Combining (6.2.4)~(6.2.6) shows that

EDWisn) — Walxo) = —E 3, 1005+ Fiute) 1
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aud hence, since Wy(xy) = xyQxy, that
EWy(x0) < Cplu). ) (6.2.7)

On the other hand, the same argument holds with equality instead of
inequality in (6.2.6) when u,(x) = u;(x), so that

EW,(xg) = Cy(ub). (6.2.8)
Now (6.2.7) and (6.2.8) say that u' is optimal. . O

The proof actually shows a little more than is claimed in the
proposition statement. Indeed, since W(x,) is only a function of x,,
the expectation in (6.2.8) only involves the (arbitrary) distribution of
the initial state x,. In particular, if x, takes a fixed value, say X, with
probability one, then the corresponding optimal cost is just Wy(%X,).
Thus Wy(x,) should be interpreted as the conditional optimal cost
given the initial state x,. The overall optimal cost is then obtained by

averaging over X, as in (6.2.8). A similar interpretation applies to W,,.

namely W, (x) is the optimal cost over stages k, k+1,...,N con-
ditional on an initial state x, =

The solution of (6.2.2) is related ina 51mp1e way to that of the
‘deterministic’ Bellman equation (6.1.4). In fact,

W (x) = xTS(k)x + o

where S(N) = @, S(N — 1),...,S(0) are given by the Riccati equation
(6.1.20) as before, and «, is a constant, to be determined below. Note

* that if W, (x) = x"S(k + 1)x + o ,; then for fixed x, v,

EWj 4 1(A(k)x + B(k)v + C(k)w,)
= (A(k)x + B(k)v)"S(k.+ 1)(A(k)x+ B(k)v)
+ 2E(A(k)x + B(k)v)*S(k + 1)C(k)w,
+ EwF CT(k)S(k + 1)C(k)wy + 0y r
= (A(k)x + B(k)v)"S(k + 1)(A(k)x + B(k)v)
+ tr[CT(k)S(k + 1)C(k)T + 04
where the last line follows from the facts that Ew, =0, cov(w,) = 1.
Notice that the final expression is identical to that obtained in the
deterministic case except for the term tr[CT(k)S(k + 1)C(k)T + o441,
which does not depend on x or v and hence does not affect the

minimization on the right-hand side of (6.2.2). Thus if W, (x)=
xTS(k + 1)x + a; ., then the induction argument as used in the

[N
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deterministic case shows that
Wi(x) = xTS(k)x + 04 41 + tr [C"(k)S(k + 1)C(k)].

But Wy(x) = xTQx, i.e. oty = 0, so working backwards from k =n we
see that

N-1 :
oy = Zk te[CT()SG + HNC()]1.

Summarizing, we have the following result.

Theorem 6.2.2

For the stochastic linear regulator with complete observations, the
optimal control is

ug(x) = — M(k)x,

where M(k) is given by (6.1.16), i.e. is the same as in the deterministic
case. The minimal cost is

Cy(1%) = mESO)mo + tr[S(O)P,] + Nf tr[CT(k)S(k + 1) C(k)].
k=0 :
(6.2.9)

prROOF The optimality of u* follows from Proposition 6.2.1. As to
the cost, we note that

Wolx) = X"S(O)x + oo

is the conditional minimal cost given that the process starts at xo = x.
Taking the expectation over the distribution of x,, and using
Proposition 1.1.3(b), we obtain (6.2.9). ; : O

Note that only the mean m, and covariance P, of the initial state
are needed to compute the optimal cost, so it is not necessary to
suppose that x,, is normally distributed. The important feature of the
above result is that the matrices S(k) and M(k) do not depend on the
noise coefficients C(k), so that in particular the optimal control is the
same as in the deterministic case. Thus adding noise to the state

* equation as in (6.2.1) makes no difference to the optimal policy, but

simply makes that policy more expensive. Indeed, if the system starts

ata fixed state x, (so that mg = xo and P, = 0) then the additional cost
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is precisely
N-1
-3 tr[CT(k)S(k + 1)C(K)].
k=0

Let us now consider the discounted cost case. We will assume for
simpliciﬁy of notation that the coefficient matrices 4, B, D, F are time
invariant but, with later applications in mind, time variation will be
retained for C(k). Thus the problem is to minimize

N—-1
E( Y pHIDx+ Ful? + pNxﬁQxN)
k=0
We use the same device as before, namely rewriting the cost as
N-1 .
E( S |IDxf + Fulll> + xf Qx&) (6.2.10)
K=o

where xf = p*2x,, uf = p**u,. Multiplying (6.2.1) by p¥*t 2 shows
that xf, uf satisfy '

} xf ., = APxL + BPuf + CP(k)w, . 6.2.11)
where 47 = pU/24, B* = p'/2B, C*(k) = p** 2C(k). Now (6.2.10) and
(6.2.11) give the problem in non-discounted form. As noted above, the

optimal control does not depend on C*(k); applying our previous

results it is given by :
up(9) = — MP(x

where M?(k) is defined as in Section 6.1 above. The corresponding
cost is, from (6.2.9)

Co(u?) = mES"(O)mq + tr[SPO)Po] + Zi; tr[CPT(k)SP(k + 1)CP(k)]

= m3SP(0)my + tr[SP(0)Po] + Nf P 1tr[CT()S(k + 1))
. K=0 .

The importance of the discount factor becomes apparent when we
consider infinite-horizon problems. Suppose that conditions (6.1.30)
are met and that S is the solution to the algebraic Riccati equation
with coefficient matrices A?, B?. Such a solution exists for any p < 1.

Now .consider the N-stage problem as above, with' terminal cost’

matrix Q = S°. This is the ‘matched impedance’ case, discussed at the
end of Section 6.1, for which S?(k) = S for all k. Thus the optimal
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control is the time-invariant feedback
u(x,) = — M"x, ' (6.2.12)

and the cost over N stages is

C8 (u?) = m5SPmq + tr[SPP] + Nf P+ [CT(R)SPC k)]
. k=0
: (6.2.13)

Note that if p =1 (no discounting) and C(k)= C is constant, then
Cf— o as N—oo and hence the infinite-time problem has no
solution (all controls give cost + co0). This is not surprising. The
reason that finite costs could be obtained in the deterministic case was
that ||x,|| converged to zero sufficiently fast that

o0
> lxd?
k=0 .

‘was finite. However, in the present case || x, || does not converge to zero
because at each stage it is being perturbed by the independent noise
term Cw,, and the controller has continually to battle against this
disturbance to keep || x, || as small as possible. If, however, p < 1, then

im Cf = m3Smo + uSPo] + 72—
N- -

tr[CTSPC]. (6.2.14)

Thus any amount of discounting, however little, leads to a finite
limiting cost. One can show, by methods exactly analogous to those
used in the previous section, that the time-invariant control u” given
by (6.2.12) does in fact minimize the cost

C*,(u) = E( Y p*IDx, + Fuk||-2> (6.2.15)
k=0

and that the minimal cost is precisely the expression given in (6.2.14).
As to the conditions required, recall that if (4, B) is stabilizable then
(A®, B) is stabilizable for any p < 1; thus

(a) If conditions (6.1.30) are satisfied then the infinite time discounted
problem is well-posed, and has the above solution, for any p < 1.

(b) Ifeither of conditions (6.1.30) fails then we must take p < po where
po is such that (47, B?), (D, A) are stabilizable and detectable
respectively for any p < p,. Generally, po <1.
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If C(k) is not constant then exactly similar results apply as long as

$ p*+Ltr[CT)SPC)] < o0

k=0

and this will certainly be the case for any p < 1 as long as the elements :

of C(k) are uniformly bounded, i.e. there is some constant ¢, such that
for all i, j, k, ' .

|Ck)ijl < c;.

This, in turn, is always true if the C(k) sequence is convergent, i.e.
there is a matrix C such that C(k)—~ C as k— co. The same control is
optimal but there is in general no closed-form expression, as in
(6.2.14), for the minimal cost, which is now '

mISPmy +tr[SPP]+ 3, p** 1 r[CT(R)SPC(K)].  (6.2.16)
. k=0

Let us now consider minimizing the average cost per unit time,
| L=
C,u)= lim —E [ Y. IDx; +Fuk||2]. (6.2.17)
N-o N k=0 .

As before we assume that all coefficients are constant except for the
noise matrices C(k) which are supposed to be convergent: C(k) — C as
k— oo0. This is needed in the next section.

The limit in (6.2.17) may or may not exist for any particular control
u, but it certainly does exist for all constant, stabilizing controls, i..
controls of the form uX = — Kx, where A:= A4 — BK is stable. For
then the closed-loop system is

X1 = Ax, + Clk)w,

and we know by a slight extension of results in Section 2.4 that
Q(k): = cov(x,) = Q where Q satisfies

Q= AQAT + CC".
Thus

Culit= lim - 3 (D~ FK)QUK)(D — FK)']

=tr[(D — FK)Q(D — FK)"].
If the pair (4, B) is stabilizable then a stabilizing K exists and the

—

ey
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problem of minimizing C,,(u) is meaningful. We now show that C,,(u)
is minimized by the control u, = — Mx, where M is given by (6.1.28).

This is the same control policy that is optimal for the deterministic

infinite-time problem.

Theorem 6.2.3

Suppose conditions (6.1.30) hold. Then, among all controls u for
which C,(u) exists and E|x,||*> remains bounded, the minimal
cost is achieved by the control uj(x) = — Mx where M is given by
(6.1.28). The minimal value of the cost is

C,(u!) = tr[CTSC]

where S is the unique solution of the algebraic Riccati-equation
(6.1.29).

prROOF It is shown in Appendix B that 4 — BM is stable, so that--
J (u') exists. Let S be the solution of the ARE (6.1.29) and consider’

the N-stage problem of minimizing

N-1
CN(u)=E[ > ||ka+Fuk|l'2+x}SxN]
k=0

This is the ‘matched terminal cost’ problem for which, from
Theorem 6.2.2, control u! is ,optimal. Thus for any control u,
. N—1 .
Cn(u) = Cy(u')=mgSmg + tr[SPo] + Y, tr[CT(k)SC(k)].
K=o .

(6.2.18)
Thus ,

.o ) .1
Al,l_l”rgo NCN(M) = 131_1:120 N‘CN(ul) = Cav(ul)

as long as the left-hand limit exists. But if C,,(u) exists and E [EA RS

bounded, then
.1 .1
Jlim = Cyu) = Ca() + lim NE[xﬁSxNJ = C,(u).
This shows that u! is -optimal. From (6.2.18) its cost is

Culu') = lim %:g tr[CT(k)SC(k)] = tr[C"SC]. O
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The control ul = — Mx, is not the only optimal control for the
average cost per unit time problem. Indeed, for any integer j we can
write ;

R 1
Coli) = lim NELZO 1D, + Fuklv]

R N I =t

Now for any given control u,

j=1
) E|: ; l]ka+Fuk||2:|

is a fixed number not depending on N. Thus the first limit is zero, and
since (N — j)/N.—1 as N — o0,

)

J

. . 1 N—-1 .
Cufi) = lim Tv_—jE[ ||ka+Fuk||2]. |

" The expression on the right is the average cost from time j onwards

starting in state x;, and its minimal value does not depend at all on
what controls u, were used for k < j. Thus any control of the form
: li

b arbitrary, k<j
T — Mx,, k=j

is optimal. Thus the average cost criterion is only relevant when one is
mainly concerned with ‘long-run performance’; the idea is that the
system settles down to a statistically stationary state in which an
average of precisely tr[CTSC] is added to the cost at each stage,
and this is minimal. There is, however, nothing in the cost criterion
which specifies just how long this settling-down period is supposed
tS last. The discounted cost formulation has the opposite effect: it
emphasizes performance during some initial interval the length of
which is effectively specified by the discount factor. In this case the
optimal control is unique. Another advantage of discounted costs
is that the stabilizability/detectability conditions can always be met
by sufficiently rapid discounting, whereas with average costs little
can be said if the original system matrices (4, B, D) do not satisfy
these conditions. :
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6.3. Partial observations and the separation principle

We now consider control problems associated with the full state-
space model

Xy 41 = A(K)x, + Bk)uy, + Clk)w; (6.3.1)

v, = H(k)x, + G(k)w;. (6.3.2)

As before, the initial state x, has mean and covariance m,, Py and

is uncorrelated with w,. In this case the state x, cannot be measured

directly, but ‘noisy observations’ y* = (Yo, Y1,---» Vi) are available at

time k. Thus the control u, will be a feedback function of the form

u, = u(y"). (6.3.3)

This is the ‘full LQG problem’. The difficuity here is, of course, that
knowledge of y* does not (except in special cases) determine x, exactly,
and the current state x, is just what is needed for controlling the
system at time k. We deal with this by replacing the state-space model
(6.3.1), (6.3.2) by the corresponding innovations representation. As
discussed in Section 3.4, this provides an equivalent model in the form

e = ARy, + B(kJuy + K(k)v, (6.3.4)
where the innovations process v, is given by ‘
Vo= Y= Hk Ry (639

so that y, satisfies ‘ :
Ve=HK)R 1+ Vi (6.3.6)

The Kalman gain K(k) is given by (3.3.5). The new ‘state’ of the system
is %4, and this is determined exactly by y*~!. We thus reduce the
situation to one in which the state is known, and can then apply the
results of the previous section to determine optimal control policies.
First, however, the status of the innovations representation (6.3.4),
(6.3.6) must be clarified. We do this before continuing with our
discussion of optimal control problems in Section 6.3.2 below.

6.3.1 The Kalman filter for systems with feedback control

In the derivation of the Kalman filtering formulae in Section 3.3 it was
assumed that {w,} was a weak-sense white noise (w, and w, uncorrela-
ted for k # I) and that {u,} was a deterministic sequence. Under these
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conditions %y, given by (6.3.4) is the best linear (more precisely,
affinc) estimator of x, given y*~', and the input/output properties of
the model (6.3.4), (6.3.6) are identical to thosc of the original model
(6.3.1), (6.3.2). Now, however, we wish to consider controls u, which

are not deterministic but which are feedback functions as in (6.3.3).

Further, there is no reason why u,(y*) should be a linear function of ¥

“Suppose in fact that'this function is nonlinear. Combining (6.3.3)-

(6.3.5), we see that %, satisfies
Repipe = A(k)ﬁlqk..] + Bk)uy(y*) + K(k)(yi — H(x)*/qk—l)- (6.3.7)

Given the sequence y’ = (yo, ¥1,--.,¥;» One can use this equation for
k=0,1,...,j to compute %;, ;- Thus X, is a function of y/, say
*j+ = gj(yj)-

Now g; is a nonlinear function, due to the nonlinearity of u, in (6.3.7).
So .>2j‘+ j cannot possibly be the'bc':st' linear estimator of x;, ; given ’,
as it would be were u, deterministic. To get round this apparently
awkward fact, we use the alternative interpretation of the Kalman
filter, namely that if the w, are independent normal random vectors

and x, is normal, then %, ; is the conditional expectation of x;44

given ). The advantage of this formulation is that there is no

requirement that a conditional expectation should be a linear function
of the conditioning random variables.

Theorem 6.3.1

Suppose that, in the model (6.3.1), (6.3.2), x4, Wo, Wy,... are normally
distributed and that u, is a feedback control as in (6.3.3). Let %, _, be
generated by the Kalman filter equation of Theorem (3.3.1). Then

Rige—1= E[xdy*~1]. (6.3.8)

The innovations process (6.3.5) is a normal white-noise sequence.

prooF The proof relies on Proposition 1.1.6 which shows that
E[xj+ 1|yj] = E[xj+ 1iJ7j]

if y/, 7 are random vectors which are related to each other ina one-to-

one way, i.e. there are functions h;, hj ' such that

P=h) ¥ =hi).

o~ N N
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As in Section 3.4, let us write the state x, in (6.3.1) asx, = %, + x¥,and
correspondingly y, =y + i, where Xy, X§, Vi, Vi _satlsfy
Kes1 = AT, + C)wy, Fo=xg—Mg)

i = H(k)X, + Glk)w, B

Xty = ARxE + Bl (y"), x§=mg | . 6316

vt = H(lx. o f. 630

Equations (6.3.9) are linear, so that x,,+ 1» Yi are zero-mean normal
random vectors for all k. x¥,, and y¥ are random vectors which
depend on §* since u(y*)=u(G*+ y*¥). Applymg the standard

Kalman filter results from Section 3.3 we see that X, = E[Xer 1]V ]
satisfies .

§k+llk = A(k)’?uk y + KE) G — H(k)fkm ) - (63.11)
where K(k)is given by (3.3.5). We cannot obtain (6.3.4) immediately by

(63.9)

addmg {6.3. 11) t0(6.3.10) because the condltlomng random variable i is

7* and not y* as required. However, 7 and y* are equlvalent in the
sense mentioned earlier. Indeed, plainly from (6.3.10), x¥, and hence
y¥, is determined by y* ™! = (yo, Y1,---» Ye-1)- Thus

P =y — ¥ = h(P).

Conversely, suppose 7* = (Jo,71,.--,Ji) is given; then y, is deterQ
mined. We show this by induction. Suppose that for j=0,1,...,k
there are functions f; such that

= f{7)- ' (6.3.12)

Then given 7* we can calculate y;, 0 < j <k, and hence yj,,, using
{6.3.10). But now ‘
Virr =Frw1 + V1 = fou i FD)
Thus (6.3.12) holds for j =k + 1. At time zero,
y§ = H(0)x§ = H(0)m,
atnd mg is known, so that

Yo= H(O)mo + Jo =3fo(}—’o);

. Thus (6.3.12) holds for all j, arid fJ h;

This argument shows that j* and y* are obtamed from each other in
a one-to-one fashion, and hence that

ka,k = E[ X, 1|.)7 1= E[%+ 1[}”‘]-

e e e e e+ e
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Now x},, is a function of y¥, so that

E[x¥e 1109 = sy
Combining these relatlons we obtain

E[x 41 1V*] = E[x¥+ 1 +xk+1ly ]
=Xf+1 +xk+llk' '

Adding the equations (6.3.10) and (63 11) shows that %, ,,:=

E[x,+,|y*] satisfies (6.3.4). Thus (6.3.4) is indeed the Kalman filter

when u, is a feedback control, as long as the disturbance process w, is
a normal white-noise process. As regards the innovations process Vio
note that
V=Y — Hk) L1
= Ji + y§ — HR)(x¥ + Xe—o)

Ve — (k)iklk 1
Thus v, coincides with the innovations process correspondmg to the
control-free system (6.3.9). It is therefore a normal whlte noise process
with covariance

E[v,vi] = Hk)P(k)H (k) + G(k) GT(k) : (6.3.13)
as in Section 3.4. O

It is perhaps worth pointing out 'that, even if w, is 2 normal white-
noise process, the state process x, is not necessarily normal, since
(6.3.1), (6.3.2) determine x, as a possibly nonlinear function of w*™*.
However, the conditional distribution of x, given y*~! is normal, since
x, has the representation

X =Xf + xklk 1+ X
=Xy T+ xk|k 1

where X, _, = %, — Xy is a normal random vector with mean 0 and
covanance P(k) given by (3.3.6). Thus the conditional distribution of
X, given Y*~Uis N(%y,_1, P(K).

6.3.2 The linear regulator problem -

Let us now return to the control problem of choosing u, to minimize

- the cost

e .
Clu) = E( k;; 1D{)x + F(k> + x},QxN). (6.3.14)
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This is the same form of cost as in Section 6.2 but a different class of
controls is involved. In .this section we shall consider feedback
controls of the form :

) uk = uk(yk_l) (6.3.15)
rather than u,()*) as discussed above. Controls (6.3.15) are of course a

sub-class of those previously considered — we are now insisting that -

the control u, should depend on the observations y; for times j up to,
but not including k, whereas previously dependence on y, also was
allowed. This restriction is introduced for two reasons. Practically, it
means that “instant’ data processing is then not required: at time k we
record the new observation y,, and apply the control u(y*~*) which
can be computed somewhat in advance since it does not depend on y,.
Mathematically, controls (6.3.15) are related, as will be seen below, to
our formulation of the Kalman filter as a predictor, giving the best
estimate %, _, of x, given y*~1. Analogous results can be obtained for
controls u,(y*), but these involve the Kalman filter in the form which
computes the current state estimate 2, and this is somewhat more
complicated. , _

The cost Cy(u) in (6.3.14) is expressed in terms involving the state
variables x,; we wish, however, to use the innovations representation
(6.3.4) in which the state variable is £, _,. The first task is therefore to

re-express Cy(u) in a way which involves 2, -, rather than x,, and’

this is done by introducing conditional expectations as follows:
N=1 : :
Cyu)=E (kZo EL | D(R)x; + Feuu)* 1y~ 1]

+ E[xyQxnly"~ ‘]). (6.3.16)

Now x, can be expressed in the form
Xpe = Xygpm 1 + Xy
where %,,_, is a function of y*~1 and the estimation error Xy,_, is
independent of y*~* with distribution N(0, P(k)). We can simplify the
terms in (6.3.16) using this fact and properties of conditional
expectations. The last term is: .
E[x",:,QxNIyN" = E[@m}v-x + XMN—I)TQ(-*MN—I + leN-i)IyN_ 1
= JACITwN—lQ’zMN—l + E[iglN—lQiNlN—llyN— 1
= Je’ll\‘liN—_IQ)eNlN—l +tr[P(N)Q].

(6.3.2), (6.3.14) is
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Similarly the kth term in the sum becomes '
EL (D)4 + Flt + DY)
) (DR + Fl) + DRy )y ™11
= | (k)& + F(R)ui > + tr [P(k)DT(K)D (k)]

where we have used the fact that u, is a function of y*~*. Thus
N-1
Cy(w) = E( k;O | D)y + F(k)ulI* + Jezw-lezvuv—l)

+'S erowPDT) + uTPGL  (6347)

This expresses Cy(4) in a way which involves the state £,,_, of the
innovations representation. The important thing to notice about this
expression is that the first term is identical to the original expression
(6.3.14) with , replaced by %,,_;, and that the remaining two terms
are constants which do not depend in any way on the choice of u,.
Thus minimizing Cy(u) is equivalent to minimizing

N-1 '
E( k;o ID(R)R ey + Flkui* + JeN,N_IQ;eN,N_,) (6.3.18)

where the dynamics of Ry aT€ given by'(6.3.4), namely
Ruems = A(R)Ryyy_y + B(k)uy + K(k)vy.. 6.3.19)

. Since-the innovations process v, is a sequence of independent normal
random variables, the problem (6.3.18)—(6.3.19) is the standard -

‘completely observable’ regulator problem considered in the previous
section. All coefficients are as before except for the ‘noise’ term K(k)v,
in (6.3.19). However, it was noted in Section 6.2 that the optimal
control for the linear regulator does not depend on the noise
covariance. Therefore the optimal control coefficients are the same as
in the completely observable case. We have obtained the following
result:

Theorem 6.3.2‘

The optimal control for the noisy observations problem (6.3.1),

i} = = M(k)%y,_, (6.3.20)
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where M(k) is given as before by (6.1.16). The cost of this policy is

Cy(6) = m3S©O)mo + tr[PIN)Q] + :il tr[D(K)P()DT(k)
=0

+ G(R)GT(K)KT(K)S(k + 1)].
+ K()(H(P(HT(K) : (6.3.21)

prOOF Only the expression (6.3.21) for the optimal cost remains to
be verified. We use the expression (6.2.9) for the completely observable
case. First, note that the initial condition for (6.3.19) is deterministic:
%g1 = 0. Next, consider the contribution of the ‘noise’ term K(k)v,.
Define '
7, = [HP()H™(k) + GG (k)] =12,

(the inverse exists since by our standiﬂg assumptibns G(k)G™(k) > 0).

* From (6.3.13) we see that E[¥,7; ] = I,so that j,isa normalized white-

noise process, and (6.3.19) can be written ,
Ry s 1ie = AR Ry + Bl + K(k) [H(k)P(k)H (k) + G(k)GT(k)1*/*7,.

This is now in the standard form of (6.2.1) with a new ‘C-matrix’
K[HPH™ + GGT]*? and we can read off the optimal cost from
(6.2.9). Remembering that the two constant terms from (6.3.17) must
also be included, we obtain (6.3.21). , O

Let us summarize the computations needed in order to implement

the control policy described in Theorem 6.3.2. They are as follows: .

(a) Solve the matrix Riccati equation of dynamic. programming
backwards from the terminal time to give matrices S(N),...,S(O):
S(k)= AT(I)S(k + 1) A(k) + D(k) D(k) '
— [AT(k)S(k + 1)B(k) + DT(k)F(k)]
[B™(k)S(k + 1)B(k) + F*(k)F(k)]~*

[BY(k)S(k + 1)A(k) + FT(k)D(k)] (6.3.22)

S(N)=0Q.
This determines the feedback matrices
M(k) = [BT(k)S(k + 1)B(k) + FT(k)F(k)]1™*
[BT(k)S(k + 1)A(k) + FT(k)D(k)].

(b) Solve the matrix Riccati equation of Kalman filtering forwards
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from the initial time to give matrices P(0),..., P(N):
Pk + 1) = A(k)P(k)AT(k) + C(k)CT(k) — [A(k)P(k)H™ (k) + C(k)G(k)]
H(k)P(k)H"(k) + G(K)G™(k)]™* '
[H(K)P(k)A™(k) + G(k)CT(k)]
P(0)=P,. ' (6.3.23)

This determines the Kalman gain matrices

- K(k) = [A(k)P()HT (k) + C(k)G"(k)][H (k)P(k)H T(k) + G(k)GT(k)] .

It is important to notice that these computations refer iridepend-
ently to the control and filtering problems respectively, in that (a)
involves the ‘cost’ parameters Q, D(k), F(k) but not the ‘noise’
parameters P,, C(k), G(k), whereas the converse is true in the case of
(b). ‘

The property that the optimal control takes the form 4'(k)=
— M(K)%y_, where M(k) is the same as in the deterministic or
complete observation cases, expresses the so-called ‘certainty-
equivalence principle’ which, put in another way, states that,
optimally, the controller acts as if the state estimate %, _, were equal
to the true state x, with certainty. Of course, the controller knows that
this is not the case, but no other admissible strategy will give better
performance. ' .

That M(k) is unchanged in the presence of observation noise is
entirely due to the quadratic cost criterion which ensures that the cost
function for the problem in innovations form is, apart from a fixed
constant, the same as that in the original form. On the other hand, the
fact that the intermediate statistic to-be computed is £, _,, regardless
of cost parameters, is a property which extends to more general forms
of cost function. To see this, recall that whatever admissible control is
applied, the conditional distribution of x, given y* 7 is N(Ry,_y» P(K)).
Now suppose that the cost to be minimized takes a general form
similar to (6.1.14), i.e.

Cylw) = E(:zo Ik, 1) + g(xN))

where | and g are, say, bounded functions. Introducing intermediate
conditional expectations, we can express Cy(u) as

= {5, BTl sl + sl 1)
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“The conditional expectation can now be evaluated by integrating
"with respect to the conditional distribution. This gives

E[l(k, X, w|y* =11 = Ik, Ry 1> )

~and
E[g(xN)in_ 1] = g(xNIN—-l)
where ' .
[ 1
Totw= | Won) Gmae Py
-exp((z —%)"P~ 1(k)(z — %)) dz
o 1
0= 9 G )

exp((z— TP H(N)(z — %)) dz.

- Thus

Cnu)= E(:g,; Uk, R 15 ) + gA()eNIN—l)>' (6.3.24)

_The problem (6.3.19), (6.3.24) is now in innovations form and can be
solved by dynamic programming. Define functions Wj,..., Wy by

W) = §(%)-
W (%) = min{lk, %, v) + EYW, (A% + Bv +K(k)v,)

k=N-1,...,0 (6.3.25)

where E™ denotes expectation taken over the distribution of v, which
is N(0, HP(k)H + GG"). Let i1'(k, £) be a value of v which achieves
the minimum in (6.3.25). Then the optimal control is

= 4k, Rep— 1)
with minimal cost
C(at) = Wo(mo).

This can be checked by the same sort of ‘verification theorem’ proved
earlier. Thus is this general problem the ‘data processing’ still consists
of calculating £,,_, via the Kalman filter, but the control function
#(k, %) is not related in any simple way to the control function u*(k, x)
which is optimal in the case of complete observations.
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%
System - >V,
Iy p— y
| £
| @ k|1 Kalman filter
L ——— e — —— — — ~ Controller
Fig. 6.2

In summary, we see that the optimal controller separates into two
parts, a filtering stage and a control stage as shown in Fig. 6.2. The
filtering stage is always the same regardless of the control objective.
This is the separation principle. The certainty-equivalence principle
applies when 4'(k, x,) is the optimal completely observable control,
but this is a much more special property which holds only in the
quadratic cost case.

These results point to a general cybernetic principle, namely that -

when systems are to be controlled on the basis of noisy measurements
the true ‘state’ of the system which is relevant for control is the

conditional distribution of the original state given the observations. .

Note that in the LQG problem this is completely determined by %y, _,
since the conditional distribution is N(£,_,, P(k)) and P(k) does not
depend on the observations. Thus the Kalman filter in effect updates
the conditional distribution of x, given y*~*. The problem can be

" “solved in an effective way because of the simple parametrization of the

conditional density and the fact that there is an efficient algorithm —
the Kalman filtér — for updating the parameter %,,,_,. More general
problems typically involve extensive computation due to the lack of
any low-dimensional statistic characterizing the conditional
distributions.

6.3.3 Discounted costs and the infinite-time problem

In this section we will assume that the‘system matrices 4, B, H,C, G
are time-invariant, that D(k) = p¥?D, F(k)= p"*F, and that Q is
replaced by p¥Q for some p <1, so that the cost function becomes

N—-1
Chw) = E|: k;o p* I Dx + Fug||* + PNX}GQJCN:‘-

~

~ P
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In view of the ‘separation property’, the Kalman filter matrices P(k),
K(k) are unaffected by the discount factor p. By specializing the
preceding results, or by using an argument involving x£, uf as in
Section 6.2, one can verify that the control which minimizes C§(u) is

df=-M p(k)"eklk—l )
with M?(k) as before. The cost corresponding to 47 is

C4(@#) = m§ SP(O)mg + p™ tr[P(N)Q]
+'Y petr[DP(DT
K=o

+ pK(K)[HP(K)HT + GGTIK™(k)SP(k + 1)].
Thus if a discount factor is introduced, the filtering computation (b) is
unchanged while, in the control computation (a), 4 and Bare replaced

by p'/2A, p*/*B respectively.
Turning now to the minimization of the infinite-time cost,

C’Jo(u)=E[ > P"IIka+FukI|2],
k=0 .

we have to consider the asymptotic properties of both Riccati
equations (6.3.32) and (6.3.23). The conditions required are as follows

(A, C)} stabilizable (63.26)
EII){’ :44))} . detectable

where v ,
A=A—-CG"GG" 'H = A=A-BF'F)"'F'D
C=C[I-GYGG"N)™'G] D=[I-FF"F)"'FT]D.

These conditions simplify under the additional conditions, assumed
at the outset in most treatments of LQG control, that CG" =0 (no
correlation between state and observation noise) and F'D =0 (no
‘cross-term’ in the cost criterion). Under these conditions, 4 = 4 = 4,
¢ = C and D = D; thus conditions (6.3.26) stipulate that the system be

~ stabilizable from either the control or the noise input, and that it be

detectable either via the output Hx, or via the ‘output’ Dx, appearing

~ in the cost function.
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According to the results in Appendix B, conditions (6.3.26)
guarantee that the algebraic Riccati equations corresponding to
(6.3.22), (6.3.23) have unique non-negative definite solutions S, P
respectively and that the solutions of (6.3.22), (6.3.23) converge to S, P
for arbitrary non-negative definite terminal condition Q and initial
condition P, respectively. The optimal control for the infinite-time
problem can now be obtained by applying the results of Section 6.2
concerning the completely observable case. Indeed, the innovations

. representation is, as above,

R ipe = AXyye_y + By + C(ky7 (6.3.27)
where 7, is the normalized innovations process and
&(k) = K() [HP(k)HT + GGT]*/2.
Note that, as k— o0, A ‘
&(k)—C = K[HPH" + GG™]'/2.

where P is the solution of the algebraic Riccati equation and K the
corresponding Kalman gain. Asin (6.3.17) the cost expressed in terms
of Ry, 18 ‘ .

Cow=E [ i PHI DRy 1 + Fiy Ilz] + Y, p*tr[DP(k)D"]
k=0 . k=0 .
’ (6.3.28)

and the final sum is finite since tr[DP(k)DT]—tr[DPD"] as k- co.
We now apply the results of Section 6.2 to the infinite-time completely
observable problem constituted by (6.3.27),(6.3.28), and conclude that
the optimal control is ‘ ‘

= — Mﬂ;ek,k_l L (6329)
with cost, as in (6.2.16), h ‘
mISPme + ,,20 P+t [ET()SP (] + kio p*tr[DP()DT].
Substituting for C(k) gives the final cost expression
Ce, (1) = m§ SPmo + 5_20 P*[DP()DT

+ pK(K)[HP(H" + GGTIK(K)S"11.
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Appearances to the contrary, #f given by (6.3.29) is not a constant-
coefficient controller since the gain K(k) in the Kalman filter depends
on P(k) which is not constant unless P, happens to be equal to the
stationary value P. A simpler control algorithm is obtained if K(k) is
‘replaced by its stationary value K =[APH™ + CG"] [HPH™ +

GG™]71, that is we apply the control value

ﬁk:= - Mpzk (6.3-30)
where z, is generated by
Zy+1 = Az, — BM’z, + K(y, — Hz,)
Zo = mo (6.3.31)

(this is the Kalman filter algorithm with P(k) replaced by P). Of
course, z, is in general not equal to £, _,. Control #” is not optimal for
the discounted cost problem, but #' is optimal in the sense of
minimizing the average cost per unit time,

: .1 N
C,(u)= lim —E ,: Z | Dx, + Fu, IIZ:,. (6.3.32)
N-oow N | k=0
As remarked earlier, this criterion is insensitive to the behaviour of the

process for small k; and, for large K, z, and X1 are practically
indistinguishable.

Theorem 6.3.3
Suppose conditions (6326) hold. Then the control #' given by

(6.3.30), (6.3.31) with p = 1 minimizes C,(u) in the class of all output -

feedback controls such that C,(u) exists and E || X | 2 is bounded. The
minimal cost is

C,(0") = tr[DPDT + K(HPH + GGMK'S].  (6.3.33)

PROOF It follows from the arguments above and Theorem 6.3.2°
that the control 4} of (6.3.20) is optimal for C,, and that its cost is
given by the expression in (6.3.33). Thus it remains to show that #! is
admissible and that its cost coincides with that of 2. '

Define &,: = x, — z,. Recalling that y, = Hx, + Gw, and hence that

— Hz, = H(x, — z;) + Gw,, we see that the _]Oll‘lt process (z;,&,)
satlsfles
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Zyvy | _| A—BM KH z, + KG
el | 0 a-kH||l&|T| c+rG ™
- [¢:|+CW" , (6.3.34)
k .

Under conditions (6.3.26) both 4 — BM and A — KH are stable. This .

implies that A4 is stable since the cigenvalues of ‘4 are those of
(A — BM) together with those of (4 — KH). Thus the covariance
matrix E, of (x;,&,) is convergent to E satisfying == A54T + CC™.
Since x, = &, + z, this shows that E | x;]|? is bounded and C, (5"

exists. Note that
Dx, + Foj = 5[2"]
o

where D = (D — FM, D), so that
' Co(6') = tr[DED"].

The process ;= col {%,,_;,%,,_,} satisfies (6.3.34) with 4 and C
replaced by A(k) and C(k) obtained by substituting K(k) for K in 4
and C. Denote I'(k):= cov (). Then T'(k) satisfies

'k + 1) = A(k)T (k) AT(k) + C(k)CT (k) (6.3.35)
We know that I':= lim I'(k) exists and that
k— o0

C.(d!) = tr[DTDT].

Taking the limit as k— oo in (6.3.35) we see that I" satisfies I =
ATA" + CCT, ie. ' = E. This completes the proof. O

Finally, a remark on the stabilizabxhty and detectability conditions .

(6.3.26). The conditions on (4, B); (D, A) ensure that S, the solution to
the ‘discounted’ algebraic Riccati equation, exists for any p < 1, but if
these conditions are not met then S may only exist for p < p, for
some po<1. According to the separation principle, however,
discounting has no effect on the Riccati equation (6.3.23) generating
P(k) so that no weakening of the conditions on (4, €) and (H, A) is

possible. The reason for this minor asymmetry in the problem is of
course that, while we are free to select the cost function coefficients D,

F in any manner we choose, their counterparts C and G in the filtering
- problem are part of the system specification.
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As in the complete observations case, little can be said about the
average cost problem if conditions (6.3.26) are not met.

Notes

Dynamic programming was introduced in its modern form by
Bellman (1957). Recent texts describing various aspects of it include
Bertsekas (1976) and Whittle (1981). The linear regulator problem
was solved by Kalman (1960) who also noted the filtering/control
duality. For references on properties of the Riccati equation and the
algebraic Riccati equation, see Chapter 3. The use of linear/quadratic
control as a design methodology for multivariable systems has been
pioneered by Harvey and Stein (1978); see also Kwakernaak (1976).
The ‘certainty-equivalence principle’ was first enunciated in the
economics literature, by Simon (1956). The ‘separation principle’ is
clearly presented (for continuous-time systems) in Wonham (1968)
and is also discussed in Fleming and Rishel (1975). The stochastic
linear regulator is discussed in one form or another in most texts on
stochastic control, including Bertsekas (1976) and Whittle (1981).
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CHAPTER 7

Minimum-variance and self-tuning
control

In Chapter 6 we have studied LQG control system design for state-
space models. Since ARMAX models can be realized in state-space

" form, the results apply equally to ARMAX models. In either case, it is

supposed that the parameters of the model are precisely known. On
the other hand, we have presented in Chapter 4 techniques for
identifying unknown systems from input/output data. Is it possible to
combine these techniques and design controllers for ‘unknown’
systems involving some kind of on-line combination of identification
and control? The general area to control system design for imperfectly
known (and possible time-varying) systems is known as adaptive
control and has been the subject of extensive study over many years.
In this chapter we do not attempt any overall coverage of this area
(which would require at least a whole book in itself ) but restrict
ourselvesto discussing two keyideas — minimum-variance controland
self-tuning regulators — which are closely related to the material of the
preceding chapters. Both of these ideas are in their present form due
to K.J. Astrom and co-workers (1970, 1973) and have since burgeoned
into a minor industry (quite literally, in that computer controllers
incorporating these concepts are now commercially available). We
also discuss the related ideas of pole-shifting regulators, which retain
more links to classical control system design, and were introduced by
Wellstead and co-workers (1979). Within the confines of a short
chapter it is only possible to present the main theoretical results and
we must refer the reader elsewhere for their ramifications in the
context of practical control system design. S ’
This chapter is concerned with regulator (minimizing output
variance) and control (minimizing tracking error) for single-input
single-output systems described by ARMAX models. The minimum-

- variance (m.v.) regulator can be viewed as the limiting case of LQG
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control when the cost for control energy is reduced to zero. The result
is an extremely simple algorithm which, when it works, can provide
effective regulation. There are cases, however, in.which the m.v.
regulator involves excessive use of control energy or even a loss of
stability. In thesc cases one must resort to the ‘lull’ LQG control (or
some sub-optimal approximation to it) which gives better control at
the expense of a vastly increased computational load. These topics are
discussed in Section 7.1, and in Section 7.2 pole-shifting regulators are
introduced; here the concept of ‘optimality’ is abandoned in favour of
a qualitative specification of desired response expressed in terms of
pole locations. In Section 7.3, adaptive versions of these algorithms
are discussed. It is a remarkable fact that a combination of simple
least-squares estimation and m.v. control can give a system whose
long-run performance is as good as that which could be obtained if
the system parameters were known exactly. The same is true for some
classes of pole-shifting regulators. These algorithms must, however,
be modified somewhat if one wishes to prove that the parameter
estimates will actually converge under reasonably general conditions.
We present one such algorithm, due to Goodwin, Ramadge and
Caines (1981) in Section 7.4; a proof of convergence is given in
Appendix C. This is a landmark result in stochastic adaptive control;
much current research is based on similar ideas.

7.1 Regulation for systems with known parameters

7.1.1 Minimum-variance control

The minimum-variance controller is a simple scheme for regulating
the output of.an ARMAX model by a predictive cancellation
procedure. The system model is given in standard ARMAX single-
input, single-output form as

A(z™ Yy =z""B(z" Yy + C(z™ w. (7.1.1)

Here {w,} is a white noise sequence with variance ¢* and’
Az Y=14a;z7 + - 4az™"
B(Z—l)"—‘bo +b12_1 + 0t b"—rz—-(n—r)
CzH=1+4cz7 + 4z ™"

TFor convenience we suppose in this section that 4,z "Band C have the same degree n.
Some coefficients may vanish. ’
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The number of steps of delay between input and output is r, so that

by # 0 by definition. 4 and C are assumed to be stable and it is -

supposed that r=1; we shall comment below on the conditions
required for B. The control objective here is regulation, i.e. we want to
make the output y, as smail as possible. ‘Minimum variance’ means
that we seek to minimize Ey? at each k. The key to minimum-variance

_control is the so-called predictor form of the ARMAX model.

Consider first the control-free case u, =0 with time set Z. Then
according to the discussion in Chapter 2, the output y, of the

- ARMAX system (7.1.1) is a stationary process which can be written as

an infinite-order moving average:

. )’k=Q(Z_1)Wk=CIoWk+Q1Wk—1+"'
where Q(z™') = C(z~1)/A(z™'). The sum converges in quadratic
mean. The model is invertible, in that w, can be recovered from past
outputs yy, Ye—1,... by the formula

we=[0(z"H1 'y

Let us consider the r-step-ahead prediction problem of forming the
best linear approximation at time k to y,+,. We can write

r—=1 23]
Vier= 2, AiWicsr—j+ X QjerWi-;
j=o j=o
where the two terms on the right are uncorrelated and the second is
‘known’ at time k. Take a general predictor in the form

00
X= Z O(jwk_j.
Ji=0

Then the mean square error is
r—1 22}
Elyisr— X1 = ‘72{ 'Zo q; + 'Zo (dj+r— “j)z}
i= i=

and this is minimized by taking &; = g;,, s0 that ) £q;,,w, - is the
best predictor, usually denoted ., ;. What remains is to develop an
effective way of computing J, , ,, given that what we observe is {y},
not {w,}. The following proposition provides the solution. -

Proposition 7.1.1.

There are unique polynomials F(z 1), D(z™") of degrees r —1,n—1
respectively, such that

Clz™Y) = Az )Fz™")+27"D(z™"). (7.1.2)
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proOF F and D are obtained by equating coefficients of 2z~ for
j=1,...,(n+r—1)in (7.1.2). Write : :
Fz™Y) =1+ fiz7 -4 froz770
D(Z—l):-do +d12_1 e +d,,..12—$"_1).

Then we obtain
cr=ar+fi
c=a,+a,fi+ /s

Cro1 =0+ f s+ +arfoat froy
G=a,+d_f1+-+af-1+do

Ozanfr—l + dn—l-
The first (r — 1) of these equations determine fy,..., f,-1 recursively
and the last n determine do,...,d,_;- ]

Using the expression (7.1.2) for C(z™ ) in (7.1.1) (still with u, =0) we
obtain

- D(z™})
Vir = F(z™ YWy, + mwk
Co D(z™Y)
=F(z" YWyes, + EF‘_)yk'
The best predictor is thus
D(z™1)

' Dewre = 'C“(z—-r)‘,_\’k
with prediction error
r—1
o* ¥ fi
i=0
(the coefficients fy,..., fr—1 coincide with ¢y,...,¢,-, and fo=

go = 1). Notethat this providesa very simple way ofcalculating 9, , - it
is the output of the ARMA system '

Ciz™ l)j)k+r|k =D(z" Yy,

driven'by y,. (Here, z~ sk = Demtanpe-1)
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Let us now return to the controlled case with u, # 0. A little algebra -
using the identity (7.1.2) shows that the system equation (7.1.1) can be
written in the form -

-1 -1 -1 ,
Be HFETY D) (7.13)

Ye+r= C(Z—l) “k+c(z—1)Yk+F(z_1)wk+n

and, since F has degree r — 1,

Fz™ Wit =Wier+ [1Wear—1+ "+ fro1Wir 1 (7.1.4)

- Now suppose that the control u is a linear function of present and

past outputs yy, Ve ... - [n view of (7.1.4), the first two terms on the
right of (7.1.3) are uncorrelated with F(z~ Y)Wy, and hence -

B -5'1F -1 D -1 2 4 .
Eyz+,=E( (ZC(Z)_(,Z) i+ Cg;y> T E(FG )

. (7.1.5)
This expression is minimized by taking A
B Y)FE Y+ Dz )y =0,. (7.1.6)
ie.,
D -1
P (7.1.7)

This is the minimum-variance (m.v. )y control law. One of its advantages
is that it is extremely easy to compute on-line, since the recursion
(7.1.6) expresses the current control value u, as a linear combination
of a finite number of past u;'s and y;’s. If the minimum-variance
controller is applied then the controlled process y satisfies the
equation T ' ’

— -1
Ve=F@E" Iw,
so that y, is a moving-average process of order r — 1. Its variance is

Eyt=(f3+ 1+ + f1-)0%

Example 7.1.2
Let us consider the system
(1 +az" Yy =22 + (1 +cz” Hw, (7.1.8)

with o2 = 1. In this case F=1'+(c=a)z” !, D= —a(c — a), and the
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hﬁnimunﬂvarianbc controller is
alc —a)
=— ., . 7.1.9
U T+(c—az 17 (7.19)
. the output variance then being
Eyt=fi+fi=1+(c—a)’ (7.1.10)

An obvious drawback of the minimum variance controller is that it
cannot be uscd if B has unstable zeros' (such systems arc often called
non-minimum phase systems). Indeed, since with m.v. control {y,}
satisfies y, = F(z~")w, we see from (7.1.7) that {u,} is given in terms of
the disturbance sequence {w,} by

D -1

If B has unstable zeros which are not cancelled by those of D then
var (u,) — co. One can easily see the mechanism of this instability by
considering the deterministic system yj, + yy— =t — 2uy_ ;. Il yo = 1
and uo, =0 then the control sgquence u,=2*"! gives y, =0 for
k = 1; progressively larger control values are required to cancel out
the effect of previous controls. Of course such a control policy is
totally unacceptable but is not excluded by our formulation because
the control values are uncosted.

For minimum-phase systems (B has no unstable zeros) the m.v.
controller gives a control process {u,} which is asymptotically
stationary; but this process may still have very large variance. An
example is given in Section 7.1.3 below.

Minimum-variance controllers can also be designed with the
objective of tracking a given (non-random) reference signal y¥.
Indeed, subtracting y¥,, from both sides of (7.1.3) we can write, as in
(7.1.5),

Blz"Y)F(z™')  D(z™}) 2
E(yk+r_.yl?+r)2=E< cez ) Uy +C(Z“1) = Viéer
2
+ E<F(z_1)wk+r) s
giving the modified m.v. controller recursively as follows: -
B(z™)F(z™ Yuy = C(z™ Yy¥s, — D(z™ Yy

*We say zcros of a [unction P(o) are stable (unstable) if they lic outside (inside) the
closed unit disc. Likewise we define stable and unstable poles.
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As before, the error variance is

r=1
o? %: fE.

The most frequently encountered practical case of this is y¥ = y* (a .

constant ‘set point’).

In many circumstances the m.v. controller is a satlsfactory
practical device. For a specific system with known parameters it is
very easy to compute the coefficient of the m.v. controller; if these turn
out to give an adequate stability margin then this design will provide

‘effective control. If not, then some form of control costing must be

incorporated but this involves a substantial increase in the amount
of computation required. The main use of the m.v. controller in its
simplest form is in fact in connection with self-tuning control as
discussed in Section 7.3.

7.1.2 The minimum-variance regulator with control costs

The m.v. controller for the system (7.1.1) minimizes EyZ simulta-
neously for all k and hence minimizes the long-run average cost

Jim 5.3, B2

or the discounted cost
o0
E ) P

with 0 < p < 1;in fact these quantities take the minimal values f* and
pf*/(1 — p) respectively, where

r-1
fr=c*3 1t
- k=0

With control costing such simultaneous minimization is no longer
possible since each u, contributes to the output at several different
times. Consider the cost function

N .
Ju)= lim EL Y (v + Aud). (7.1.11)
N-w Nk=1

When A = 0 control is uncosted and the minimizing u will be the m.v.
controller. When A > 0 we have a quadratic cost functional, and since

the system equation (7.1.1) is linear the minimization of J(u) is an

LQG problem of the sort considered in the previous chapter. The
parameter A can be adjusted so as to penalize more or less severely the
use of control energy.
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In order to apply the LQG theory we have to realize the ARMAX
model in state-space form. The standard realization as given in
Chapter 2 is .

Xp4+1 = Ax, + Buy + Cwy

v =[0,...,0,11x, + w, (7.1.12)
where
r—O ‘_a" T "gb"-r“‘l_
1 — 0y E
| b
A= B= ;
.0 1 —a, : 0 ]
[ Cp— Q7]
C=
| ¢y — 4y ]

However this realization is not quite the appropriate one here since a
state feedback control u, = Kx, gives a control u, depending only on
Wy— 1, Wk 2, - - » Wo, Whereas the m.v. controller (for example) depends
On Wy, Wy 1, - ., Wo. We should therefore include w, as a state variable

attimek. Define,: = w, . ;and x: = w,. Thenthestateequationscanbe

written in the form

X041 0 07 xp 0 1
[xkﬂ] N I:C A][xj " [B]uk " [0]0"
X0 (7.1.13)
yk=[1,0,...,0,1]|: "} '
Xk
With this realization, controls in state feedback form u, = KX, (where
%I = (x2, x7)) are sufficiently general to cover the minimum-variance
controller as a special case. '

The reader will object at this point that the correct class of controls
for this problem is not state but output feedback and therefore that
the solution is that obtained in Section 6.3 for the partially observable
case, involving a Kalman filter to estimate the unobserved states.
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Recall, however, that the realization (7.1.12) is in innovations form,
which means that the only uncertainty is in the initial state x (if this is
known then the remaining states can be calculated exactly from the
output) and consequently that the asymptotic estimation error
covariance is zero. If we wished to minimize an infinite-time
discounted cost then it would indeed be necessary to include a Kalman
filter to provide accurate estimates of the initial state. But to minimize
the average cost criterion (7.1.11) it is optimal, as shown in
Section 6.3, to apply the optimal LQG control with the Kalman filter

"covariance set to its steady-state value, and this is equivalent to state

feedback in the present context.
Denote by 4, B, C the matrices in the state equation (7.1.13) and let
H:=[1,0,...,0,1]. The cost J(u) can be written in standard form as
N

o
J)=lim — 3" 1Dx,+ Fiy* (7.1.14)

N—w k=1
where )

[} (5]

The algebraic Riccati equation for the problem' (7.1.13)~(7.1.14) is
now given by (6.1.29) as o

e 1 e e =
=AT TH — L — ATSBBTSA 7.1.15
S=A'SA+HH m ( )

and the optimal control is

ud = — Mx, (7.1.16)
where .
M =(B"SB+2)~'B"SA.
These conclusions are valid under conditions (6.1.30), namely that
(A, B) be stabilizable and (D, A) detectable. It is casily checked that
these conditions hold, in view of the fact that A4 is stable.

Use of control (7.1.16) is guaranteed to give a stable closed-loop
system and to minimize J(u). Computation of up is, however, not
elementary, since the algebraic. Riccati equation (7.1.15) must be
solved, and the form of the solution gives, it must be admitted, very
little insight into the optimization process. In fact, up given by (7.1.16)
reduces to the minimum-variance controller when A = 0. (Recall that
the conditions ensuring closed-loop stability are not met when 4 =0,
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so the m.v. control may be u-nsfab]c). Rather than showing this in

general it is perhaps more illuminating to examine Example 7.1.2
again.
For this cxample the state spacc realization (7.1. 13)

X0, 0 0 0[x7 Jo I
Xeer [=| 0 0 O || xx [+] 1|ug+]|O o
X2y c—a 1 —a|| xf 0 0

=[1,0, 1]x. - (7.1.17)

Let us denote the elements of the symmetric matrix S as

Sy S22 S3
S = SZ 34 SS .
) S3 S5 Sg

Then the algebraic Riccati cquation (7.1.15) becomes

S Sy, S5 q% (c=a)? (c—a) —alc—a)
S, Si Ss =[s(,——‘ : ] (c—a) i —u
Sy S5 Sg sa+4 N—alc—a) —a a?
1 0 1
+/0 0 0].
1 0 1

These six simultaneous equations are very easily solved when A=0,
the solution then being s, =1 and

si=(c—a)’s,+1  s3=1—alc—a)s,
5, =(c—a)sy S5 = —as, (7.1.18)
' s¢=1+a%,
(we retain the s,-dependence here for later use). The control given by
(7.1.16) is then
up = alc —a, 1, — a)%,.

Referrmg to (7.1.17) we see that in this realization x? = w,, x} = uk -
=y, — W, so that

uf = a((c — ayw, + ul_, — a(y, — wy)
= a(ew, + ud_ | — ay,).

Multiplying both sides by (1 + cz~') and using the basic ARMAX
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relation (7.1.8), we obtain

(1 +cz" Y =ac(l +cz™ YYw, + a(l +ez7 )z ug — a¥(1 +ez")yk '

=ac[(l1 +az" Yy, —z"*uf
+a(l +cz™Yz7 ) — a*(1 4 cz™ Yy,
=qaz" ! °+a(c-—a)yk
But this shows that
a(c — a)
(T+Cc—az
which i the same as the m.v. controller (7.1.9). The cost of control u® is

J(u°) = CTSC =35, = 1 + (c — @)* which coincides with the expression
given at (7.1.10).

The algebraic Riccati equation is also easxly solved when 4> 0. We

ud =

find that

=41 =1 —a?) + /[ —a®) — 1)* + 441}, (7.1.19)

_and that the s; for i # 4 are given by (7.1.18) in terms of s,. As A — o0, 5,

converges to 1/(1 —a?) so that the optimal cost converges to
(c — a)* /(1 — a?) + 1. Not surprisingly, this is precisely the steady-state
variance of the system (7.1.8) with u, =0:-as A— o0, control encrgy
becomes so expensive that the optimal policy is not to use any control
at all. Calculations similar to the above show that the optimal control
ut corresponding to a given A>0 is given by

2 c—a)
U =T a1 Fe—a)? Ve | (7.1.20)

where a;:= as,/(s4 + 4), resulting in the following closed loop system

~ description:

l+(c—ayz™? A a,(c—a)

7 W, = —W,,.
I+(@—a)z=t ™ t4r@a—a)z "

k=

There are stable transfer functions since |a — a;| < 1 forall A > 0. Note
that it is not a requirement of the theory that the transfer function
relating {u}} to {y,} in (7.1.20) be stable; it may not be (take
a=—0.75, c=0.75 and 2 sufficiently small, for example).

7.1.3 Minimum-variance control by frequency-domain methods
Consider a control given in transfer function form by

u, = — R(z™ Yy, (7.1.21)
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where R(z™!) is such that A(z™')=A(z™")+z7"B(z"')R(z"') has
stable zeros. The closed-loop system (7.1.1) is then, :

Az Yy = Clz™ Wi

Thus {y,} is (asymptotically) a stationary process with spectral
density function o

O Cle)C(E™)

W(ei) = oo

(e ) Z(e-xw)Z(ezw)

The performance index (7.1.11) is equal to E(y§ + Au?) where {y,} is

this stationary process and this can be calculated directly in terms of

¥: the spectral density of {u,} is |R(¢®)|*¥(e’’) and hence using

expression (2.3.10) we see that o o

(7.1.22)

J(u)=-2%L‘P(C)(1+/1R(C)R(C“))C‘?d€ - (11.23)

(here T is the unit circle in the complex plane). Thus an equivalent

formulation of the optimization problem is: choose R so as to

minimize J(u) given by (7.1.22), (7.1.23). This has been studied in a
recent paper by Burt and Rigby (1982). They consider a slightly more
general formulation than the above. The system model is given in
transfer function form as

_z7'B(z™Y)

Y= -——Z(z—_—l—)-—uk + % (7.124)

where %, is a stationary noise process with known spectral density
®(e@). (7.1.1) is a special case of this with @)=
C(e")C(e™ )/ A(e'®)A(e™ '), but it is not necessary for g, to be
generated by a finite-dimensional system in this way. The control u, is
given by (7.1.21) and one wishes to minimize '

E(y? + vf)
where '
v, = K(z™ Y,

and K is a rational function in z~*. This form of cost provides
some additional flexibility: for example, if K(z™!)=1~-2z"1, then
v, = u, — ,_; and we penalize changes in control value rather than

- the absolute value.

With control u, = — R(z™ ')y, the system model (7.1.24) becomes
(we will often suppress the z™! dependence of A(z™?), etc, in the
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following) -
: _ A
Y=L 7BR ™
Now define
G- BR
T A+z"BR’
Then '
o _ AG .
‘ R — 7.1.25
R Bl-:z7"G) ( )
and

 n=0-z76.
Since G and R are in one-to-one correspondence, one can equally well
regard G as the transfer function to be selected. The constraints on G
are that it should be stable and that its zeros should include all the
unstable zeros of B, so that G takes the form ' ' :
Gz~ Y)=H@z™") [] 1 =pz"")

. 1Bil>1 .
where H is stable and f; are the zeros of B. Since u, = — Ry, =
— (AG/B)y;, this ensures that {u,} is an asymptotically stationary
process, as required to evaluate the cost (7.1.23). Burt and Rigby show
that the G which satisfies these conditions and minimizes E(y? + Av})
is given by :

D Co NS f Y BQ) -1y,
r

—_—T T z

¥z~ )N(z™1)v=o N(©)
~ (7.1.26)

In this expression W({ ™) and N({ ™) are the stable spectral factors of

® and BB + AKARA respectively, ie. ¥((~') and N({™') have all

poles and zeros within the unit disc and

Wz~ Y2 =) ,
N(z™)N(z) = Bz~ ")B@) + AK(z™)A(z” K (2)A(). (7.1.27)

It is clear that when >0, K =1 and W(z~!)= C(z™")/A(z™") the
control given by (7.1.25), (7.1.26) must coincide with the optimal LQG
controller (7.1.16), since these are the unique solutions to equivalent
problems. It is a matter of computational convenience which solution
is adopted: essentially the choice is ‘between solving the algebraic
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Riccati equation’ (71 15) or performmg the spectral factorization
(7.1.27).If K # 1 the solution can still be obtained by LQG theory but
further augmentation of thé state vector is necessary in order to
produce v, as an output.

When A = 0 and B has stable zeros it is possible to show directly that
(7.1.25)~(7.1.26) coincide with the minimum-variance controller, for
then N =B and

Giz™) =

00

1 +v— :
mvzo 5 | FE Dertveldr (7.1.28)

We know that this choice of G minimizes Ey? where

Yiar = (1 - Z_rG(Z_l))Xk+r
= Xe+r — G™ N

But this means that G(z~ 1)y, is the minimum mean square error

predictor of x, ., given x, %k - 1, - - - and this fact precisely characterizes
the m.v. controller.

To illustrate the above pomts, let us consider again Example 7.1.2
where the system is given by

(1 +az Yy =2z 2u+ (1L +cz” HYw,.

Here A=1+az™!, B=1,r=2and y, =[(1+cz” /1 +az" ) w,
thus W(z= 1) = (1 + cz" )1 + az~ ') as long as |¢| < 1. From (7.1.28)
the G for the minimum variance controller is

1+az7! & 1 -
z Z +CCICVHdC

Gz )= -
)= 1+cz" 1% 2m rl4+al”

Using the method of residues, we find that the vth term in the sum is
z7%c—a)(—a)"*! and hence that the sum is

—dalc—a)
(1 4az™?ty

Thi}s G(z™ ") = — a(c — a)/(1 + cz™*); from (7.1.24) the corresponding’
R is Rz™Y)=—alc—a)(l +(c—a)z™!), and this is the m.v.
controller. '

With 1> 0, one has to compute N(z™1). Thls is a first-degree

polynomial; denoting it N(z™*) = \/y(1 + Bz~1) we see from (7.127)
with K =1 that

(1 + Bz~ + 2) =14+ A1 + az~H(1 + az).

~ale—a) 3 (—az”)' =
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Solving for y, f we find that
y=5,+7 B=2af(s,+A)

where s, is given by (7.1.19). We can now compute G and R as before,
and after a lot of laborious algebra we find that R(z™!)="

—a,(c—a)/(1 + (c—a;)z™1), in agreement with (7.1.20).

Finally, we should point out that there may be significant
advantages in using the modified m.v. controller (A >0) even when
simple m.v. control gives a stable closed loop system. Sometimes the
modified controller expends vastly less energy to give an output
variance only slightly greater than that of the strict m.v. controller.
This is illustrated by Burt and Rigby for the system

2714132714+ 0.75272) wt 0435
(1—1157z-1+081z-2) 1-09z71 "

which is stable and minimum phase. The variance of the uncontrolled
system is Ey? =1. Figure 7.1 shows Ey? plotted against Eu} for
optimal controllers with values of 4 increasing from 0 to co. ‘Under
m.v. control Ey? =0.19 and Eu? = 1.6. (Point T in the figure.) When

W=

1.01

091

© o o o o
t e s
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w
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1= oo we have Ey? =1 since the optimal control is then u,=0, as
discussed earlier. But consider point P on the curve, where Euj
'=0.16, Ey? = 0.23: as compared to m.v. control, the control energy
has been reduced by a factor of 10 for an increase in output variance of
only 15%. Thus the m.v. controller is using enormous amounts of

energy to squeeze the last 159 of performance out‘vof the system.’

7.2 Pole/zero shifting regulators

As we have seen above, minimum-variance regulation has certain
disadvantages in respect of stability and excessive use of control
energy, which can be overcome by the use of LQG-based regulators.
The latter, however, have themselves two severe drawbacks: firstly,
they are hard to compute, and secondly, they do not have the ‘self-
tuning property’ discussed in Section 7.3 below. For these reasonsit is
worth investigating different sorts of regulator design, based on

‘classical’ control system design rather than optimal control theory.-

The objective of ‘optimality’ in a well-defined sense is abandoned in
favour of obtaining qualitatively satisfactory closed-loop system

behaviour. For a time-invariant linear system the response is entirely

determined by the closed-loop transfer function, i.e. by the positions
of the poles and zeros of the closed-loop system, and the objective of

classical control system design is to locate these in positions corre- .

sponding to satisfactory dynamic response. This is a subject with
many ramifications and we content ourselves here with presenting
some algorithms for pole and zero shifting for the ARMAX model
(7.1.1). These are algorithms on which self-tuning controllers can
successfully be based, as will be shown in Section 7.3.

The basic ARMAX model is, as before

Az™ Yy, =27"B(z" Yy + Clz ™), - (121)

In this section and subsequently we wish to have a little more
flexibility about the degrees of the polynomials A, B, C. These will
now be denoted n,4, ng, ne and may all be different (as opposed to the
values n, n —r, n assumed previously). The corresponding predictor

' model is

_BzhWFETH) - DY)
Year = C(z—l) uk+c(z-l)

v+ F(z™ f)wk e (122)

‘The polynomial F always has degree (r — 1) but for the degree n of D*
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there are two cases:

_ nA—l ifncénA+r—‘1
nD_ nc"'r ifncgnA'*‘r—l'

Controls are determined by dynamic feedback as follows:

-1
u, =Ij_((zf__1)) W (7.23)

Here .
Hz Y=ho+hz '+ +h, 27"
Je Y=1+jz7  + +jyz ™™ .
Combined with (7.2.2) this gives the closed-loop system description
[J(C—2z""D)—z "BFH]y,=JFCw,. (7.2.4)

The objective now is to choose H, J so that this coincides with a
specified w,-to-y, transfer function Z(z™*)/T(z~ 1), or alternatively so
that the output spectral density is the specified function

Z(e - iw)Z(eiw)
T(e - iw) T(eiw) ¢
For this it is necessary, from (7.2.4), that _
Z[J(C —z7"D)—z"BFH] =JFCT. (7.2.5)

Equating the coefficients of z°, z™*,z72,... on either side of (7.2.5)
gives us a set of linear equations for the controller coefficients h;, j;,
and conditions must be such that there is at least one solution to this
set of equations. We discuss below a few specific cases.

One could equally well compute the closed-loop system directly -
from the original system (7.2.1) together with control (7.2.3) and this
would give a condition similar to (7.2.5) but expressed in terms of 4, B,
C, rather than B, C, D, F. The reason for preferring the predictor form
is that it is the normal parametrization of the system used in self-

tuning control.

7.2.1 Minimum-variance control

Under m.v. control the closed-loop system is y, = F(z")w,ie. Z=F,

T =1. Thus (7.2.5) is satisfied if

DJ +BFH =0
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so that
1
H=——D
bo
1
J=-—B8
by F

(we normalize so that jo = 1). Evidently the appropriate degrees are
nH'=nD nJ=nB+r—1.

When T = 1 the transfer function Z/T can be thought of as having
all its poles at infinity. An alternative to this is to use a so-
called ‘detuned’ m.v. control, introduced by Wellstead et al. (1979) in
which some of these poles are placed elsewhere than at infinity,
giving a transfer function F/T for some non-degenerate T. Experi-
mental evidence in Wellstead et al. shows that this can produce
‘better’ system response than strict m.v. control, though of course
under steady-state conditions the output variance will be increased.
Detuned m.v. control is particularly simple to apply if the polynomial
T takes the form ' '

Tz =1+z""T*z™").
Then (7.2.5) becomes
JC—z7'"[JD+ BFH]=JC[1+z7"T*].

The coefficients of z~ for i < r agree automatically and we merely
require that

_ JD + BFH =JCT*

which is satisfied by

He-L1p-cr¥
bo

1
J=-—BF.
This differs from m.v. control only in the replacement of D by
D—CT*. In the ‘white-noise case’ C(z™')=1, important for self-
tuning, we obtain simply

1
—_—— — T*
bo(D T*)
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and the degree of H is ny =n, — 1 assuming, as is usually the case,
that np, <np. » .
7.2.2 Pole-shifting regulators

As the name implies, the objective of a pole-shifting regulator is to

place the closed-loop poles in positions determined by a specified

polynomial T while leaving the zeros to be determined by the design
algorithm. In particular, an effective algorithm is obtained if we
set Z=J (i.e. the closed-loop zeros are the poles of the control
transfer function), in which case (7.2.5) reduces to

“ J(C—2z""D)—z""BFH =FCT. (7.2.6)

The degrees of the three polynomials in this equality must generically
agree. Denoting the common degree by g, we have (assuming that
neSng+r—1)

q=n,+nA“+r—1=nB+2r——1+nH=r—-1+nc+nT.

The number of unknown parameters h;, j; is ny + n; + 1, so that for

. solvability we must have

g<ng+n;+1

. One choice which satisfies this with equality is

nH=nA—'l
n_, =nB + r— -1. (7.2.7)

Then g =n, +ng+2r—2 and the degree ny of the specified poly-
nomial T is limited by
) ‘ nTSnA+nB+r—1'—nc.

The values given by (7.2.7) are in fact the only values such that (7.2.6)
has a unique solution. Obtaining this solution represents a consider-
able computational burden since the g equations involved are not in
triangular form. In Wellstead et al. (1979) some special structures are
introduced for which the computational problem is somewhat
reduced.

7.3 Self-tuning régulators

The most important property of the minimum-variance controller
and some pole-shifting regulators is that it is possible to apply them in-

N N )
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a simple and effective way to systems described by the ARMAX
model (7.1.1) with unknown parameters. : e

In general, controlling systems with unknown parameters is a
formidable task. In some situations it may be possible to identify the
system off-line, using the techniques described in Chapter 4. Then a
controller can be designed using the parameters of the fitted model
(assuming that these are time-invariant). Often, however, it is not
feasible to isolate a system for off-line experimentation, and some
form of joint estimation and control must be employed. The most
thorough-going approach to this would be to regard both estim-
ation and control as part of an overall optimization problem.
Suppose the parameter vector 6 = (ay,..., @y, bo, - by Cos--+sCug) OF
the model (7.1.1) is regarded as a random vector with a known prior
density function, independent of the system noise w,. We can then
adjoin to the state-space realization (7.1.13) an additional constant
state 6, satisfying

0k+1 = ok, 00 = 0 (7.3.1)

and consider the control problem for the joint system (7.1.13), (7.3.1)
of choosing a control u, depending only on the observations y,,
Ve-1,... SO as to minimize, say, the average cost criterion (7.1.14)
where the expectation is taken over the joint distribution of (6, wo,
wy,...). Generally, such a problem is impossibly complicated: the
system is no longer linear since products of the state variable appear
in (7.1.13), so the LQG theory of Chapter 6 does not apply. In
particular, it cannot be expected that any straightforward form of
separation principle will hold. For these reasons, attempts to solve the
overall optimization problem generally have to be abandoned.

In these circumstances, a very natural idea is to adopt a ‘certainty-
equivalence’ approach, consisting of the following steps: supposing an
estimate 8, of 0 is available at time k, we apply the control u, which
would be optimal if , were the true parameter value. The output yj .,
is observed and the estimate 0, updated to 8, ., . Now the procedure is
repeated. Thus the parameters are estimated recursively and at each
stage a controller is designed assuming that the current parameter

estimate is actually the true value.

Such a procedure will never be optimal in the sense of, say,

* discounted cost, but may be optimal in the sense of long-run average

cost per unit time or some other asymptotic sense. We say that a

_procedure has the self-tuning property if its performance coincides
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with the performance that would be obtained if the system parameters
were known exactly. This statement will be made more precise in
the context of specific cases examined below. Note that it is not part
of the self-tuning property that the parameter estimates should
converge to their true values; this may not be necessary.

In designing a proposed self tuning algorithm one has to choose:

(@ A class of models to represent the system,
(b) An estimation procedure,
(c) A control algorithm.

One’s first thought is that the class of models should be one
including the ‘true’ system and that the estimation procedure should
be one that gives consistent parameter estimates for this class of
models. In the case of the ARMAX model (7.1.1), this would mean
using, say, recursive maximum likelihood identification, which ‘in-
volves a very substantial amount of real-time computation. This first
thought, however, ignores the effect that the control algotithm might
have on the estimation. It is a striking fact, uncovered by Astrémand
Wittenmark (1973), that in some circumstances a combination of
simple least-squares estimation and minimum-variance c¢ontrol has
the self-tuning property. This is true even if the system is represented
by (7.1.1) where C(z ') has degree nc > 0, when least-squares estim-
ation would be expected to give biased estimates. The effect of the
control algorithm is somehow to ‘unbias’ the estimates. This is a very
attractive result since, least squares being by far the simplest form of
recursive identification, it opens up the possibility of designing self-
tuning controllers of very modest computational complexity.

In this section we shall discuss self-tuning control based on least-
squares estimation for a system represented accurately by the
ARMAX model (7.1.1) where the system order and time delay, but not
the parameter values, are known. The control algorithms will be
minimum-variance regulators or pole-shifting controllers of some
sort. Of course it is generally unrealistic to suppose that the system
order is known a priori; we will comment on this further below.

In this section we are not concerned with establishing convergence
of self-tuning algorithms, but rather with examining what happens if
convergence takes place, i.e. investigating whether the limiting system
then has the self-tuning property. Below we study some properties of
least-squares estimation and give in Proposition 7.3.2 a general
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condition -for self-tumng This is then applied to various specific
control algorithms.

A self-tuning algorlthm w1th guaranteed convergence is presented
in Section 7 4,

7.3.1 Some properties of leasi-squares estimation

In the specxal case when C(z™!) =1 the predictor form (7 1.3) of the
ARMAX model (7.1.1) can be written as

yk+r="d(?- )yk+‘%(z—1)uk+8k+r‘ (7.3.2)
where of =D, % = BF and ¢, = F(z~*)w,. The polynomials & and
7 have degrees m and [ respectively, where
m=n,—1, l=ng+r—1. ‘ (7.3.3)
We write ‘

Az =1+az7 + - +a,z "

Bz =Po+Prz™ o+ fz7
Now suppose that u, is generated by feedback from y, through a
transfer function H/J, i.e.

= Hiz™Y
FTIEH |
with jo = 1. We suppose that H and J have no common factors. Then
the closed-loop system becomes

Lz Yy, = J(z " Ve, | (7.3.5)

(7.3.4)

where ,
' L=J(1-z"")—z""%BH. (7.3.6)

For compatibility we suppose that the degree of H and J are
ng=m and ny=|,
so that the degree of L is in general

np=l+m+r.

We now regard (7.3.2) as a model set and estimate the parameters
®;, B; by ordinary least squares. (This is a convenient way of
parametrizing the system since many control algorithms are more
directly related to o/ and 2 than to the original parameters A, B, C:
for example the minimum-variance controller is given: simply by
Bu,= — o y,). Write the observations for k =0 to N in the standard
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least-squares form as y = X0+ ¢, ie.

TOCO_

Yr Yo V-r oo Vem Uo U—q ..ty : &
Yetr | _ | V1 Yo Yi-m U3 Up U1 | | m + 8r+1.
: Do : S : Bo :
Yren YN YN-1  IN-m Uy Uy-1 Uy c EruN

_ﬂt_l

The starting values y,, u, for k < 0 will not be important. The normal
equations characterizing the least-squares estimates &;, f; are
(1/N)XTy = (1/N)X" X0, or

VoY N “;"\ o

-3 , .
N YiVk+
1 5 .
N Vi~ 1Yk+r
1 5 _
N Vi—mVi+e | =
—Z U Vi tr
N kYk+
1
— 2 Yt
| N k= 1Vk+ ]
1 . 1 1 1 3 1 Sy T
‘ﬁz}’k I‘V‘Z.Vk.Vk—t Nzykyk—m N Vil oo+ N Y -1
—I‘EJ’fﬂ [ ¢, ]
! ! ol 12 U 12 u :
NZYk—myk ‘ . 'ﬁzyk—m -IV Yi—m kN Vi —mUi—1 am
1 : 1 1 1 '
‘ﬁz“k)’k o Nzukyk—m Nzuf Nzukuk—l :ﬁo
| B ]
1 : - 1 -1 1 2
_Nzuk—lyk ’ﬁzuk—lyk—m Nzukuk—l Nzuk—l ]
: (7.3.7)

FaN

SN N SN T

™~

AN~ N



—

NN

[N N O 2 L NG N N N —

314 MINIMUM VARIANCE AND SELF-TUNING CONTROL
The factor 1/N is introduced so that all the coefficients are sample
averages over k = 1,2,..., N. Taking, say, the first row of (7.3.7) we see
that .
X ' ‘ . |
N Z VelViwr— QoY= """ — CmYi—m — Both— >+ — Biu-1=0
k=0 . . f .

ie.

1 N

Nkzo Yilr+r = 0’
where ¢, is the residual sequence defined by

Eerri= Verr— Lz )i — Bzt

Similarly, taking the other rows of (7.3.7) we obtain

M=

Vi-j&k+r=0 j=0,1,....m

k=0 (7.3.8)A

2| - Z|=
i

M=

‘uk_j8k+,=0 j=0,1,...,l.
k

0

In general, the parameter estimates &(N), B{N), and hence the
residuals ¢,, depend on N and there is no guarantee that they will
converge as N — co. However, we wish to examine what happens if
they do converge. Let us therefore make the ad hoc assumptions that

the parameter estimates converge and that the resulting closed-loop
system (7.3.5) is stable. Then y, and ¢ are asymptotically

stationary processes whose covariances are the limits of the corre-
sponding samplé averages. We describe this situation by saying the
‘parameter estimates have converged’. From (7.3.8) we then obtain
the following information. '

Proposition 7.3.1
If the parameter estimates have converged then

Eyer+;j=0  j=rr+l..,r+m
Euk8k+j=0 j=r,r+1,...,’;+l. (7.3.9)

" Indeed, these expressions are obtained from (7.3.8) by replacing the

sample averages there by the corresponding expected values. This
result does not depend in any way on the control transfer function but
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is a simple consequence of the structure of least-squares estimation.
The next result is really the heart of the self-tuning property.

Proposition 7.3.2

Suppose that the true system is described by the ARMAX model
(7.1.1), that parameter estimates &;, B, in the predictor model (7.3.2) are
estimated by least squares, where the degrees m, ] of o, # satisfy
(7.3.3), and that these estimates have converged. The control u, is

‘given by (7.3.4) where ny =mand n,=land H and J are assumed to

have no common factors. Then the residual sequence &, is a moving

average of order r — 1 if ,
ncSnA+nB+2r—2—nL (7.3.10)

where n,, is the degfec of the polynomial L given by ‘(7.3.6).

REMARK Note from (7.3.6) that the ‘generic’ degree of L is n, =
l+m+r=n4+ng—2r—2 in which case condition (7.3.10) says
ne =0, i.e. the noise in the true system model is white. This is precisely
the situation in which least-squares estimates can be expected to
‘behave’. What the result says is that it is possible to obtain the
moving-average property of the residuals even with non-white system
noise (nc > 0) if the control parameters H, J are chosen, as functions of
the model estimates 7,4, in such a way that L has less than its
generic degree, ie. some cancellation of higher-order coefficients
occurs. For instance, in the m.v. regulator we take H = — (1/8,)/
and then L = J with degree n, = ng + r — 1, so that (7.3.10) specifies
ne<ny+r—1. ‘

PROOF Suppose that convergence has taken place so that all
processes are stationary and (7.3.9) holds. Define an auxiliary process

C by
: 1
Gk =Ez_—1)8k-
Then
ye=JE" )
w, = H(z™ ).

Thus in view of (7.3.9) we have 4
0=Ey&is;=E[ e +itle-r8sst+ +thk—15k4j]_a
' : j=r..,r+m

~ 1.M.E.C.C.
BIBLIOTECA
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and : :
0= Ewey ;= E[holirj+ " + Buly—mbrsjds " J=10ee0r+ L

Define Ry,(j) = E{y&+; and assemble these equalities in matrix form.
. This gives the following:

1 e Ji ' ]
o 1 j - Ji
Rt,‘e(r) 7]
1 j ji R (r+1)
: =0.
ho hy h,
' _Rgs(r+m+l);
L ‘ho hy P |

i

The (m -+ | + 2) x (m + [ + 1) matrix on the left has full rank as long as
H, J have no common factors. Thus

R ()=0, j=r..,r+m+l 4 (7.3.11)
We want to show that in fact (7.3.11) holds for all j = r. Now the ‘true’
closed-loop system is given by (7.1.1) with u, = (H/J)y,, i.e.

[JA—z""BH]}y,=JCw,

and hence '
— 1 — C =147
TSI O T JA—z"BH]"*
Thus ¢, is an ARMA (nc, n*) process, where n* =n, +ng+r— 1.

Referring to Section 2.3, this means that its covariance function R,(p)
satisfies -

R{p)= ¢ R(p— 1)+ + ¢Ry(p — n¥) for p>nc
(7.3.13)

where the denominator polynomial in (7.3.12) is (1 — Y7 ¢iz™%).
Bearing in mind that g = L(z~*){, we have

Ck8k+p+1 = Ck(LCk+p+ 0= Cka+p+1 + l1€k€k+p R lnLCka+p—nL+l

S

(7.3.12)
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and hence -

R(p+ 1) =Ryp + 1)+ [iR(p) + - + L, Relp —ny, + 1).
. (7.3.14)

If p—n,+1>nc, then from (7.3.13), R(j) =Y. ¢:R,(j—1) for j=

p—n,+1L...,p+1 Substituting in (7.3.14) we obtain

n*

Refp+1)= ¥ LR(p~i+1).

Now
Eligrs ;= EQLesj+ Lilkaj-1 + ]
=R/())+ LR (j—1)+ - =LR{())

so that .
Ry(p +1)= .Z $iR(p— i+ 1).
Taking p =r + m + | we see from (7.3.11) that the right-hand side is
equal to zero, so that
Ry(r+m+1+1)=0,

We can repeat the argument with r +m+ 1+ 1 replacing r +m+1,
and so on, to conclude that R (j)=0 for all j>r. The condition
required is p —n, + 1> nc where p=r+m+1, and this coincides
with (7.3.10).

Finally, & = L(z~ 1¢,, so that

R())= Eskék-f-j =E[{i&r+j+ 1ile— 184+ + 1y k~nEnti]
=0 forj=r.

Thus ¢, is a moving-average process of order (r — 1). O

Example 7.3.3
Let us consider the system

(1—az Yye=bu- +(1 + cz” Yw,

where b#0 and |a|, |c| < 1. The delay is r=1. Condition (7.3.10) |

becomes n;, =0. The degrees of the polynomials involved are n; =
ng=m=1=0 so that

Liz™Yh)=1 _‘(1 + Boho)z ™t

AN~ N
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Thus the only controller that satisfies (7.3.10)is H = ~1 /Bo,J =1 and
this is the m.v. regulator for the system. Note in particular that (7.3.10)

is not satisfied when H = 0, and this is just as well since we know that.

least-squares estimates for 4 in the ARMA model A(z™ Yy, =
C(z~")w, are biased unless C(z™')= 1.

7.3.2 Minimum-variance regulators

As already pointed out above, the minimum-variance regulator
corresponding to the model (7.3.2) is

' ALz VY, + Bz Y =0, (1.3.15)
ie. : ‘ :

1
U= —'ﬁ:[ﬁmkq o B+ 2T

The controller (7.3.4) is thus H/J = —«//%, and L(z"')=J. The

conclusions of Proposition 7.3.2 are thus valid if nc <n,— 1. In this.

case we have the following result.

Proposition 7.3.4

Suppose that the conditions of Proposition 7.3.2 hold, and that the
control is given by (7.3.15), so that condition (7.3.10) becomes n¢ <
n,+r— 1. Then the controller coincides with the m.v. regulator
(7.1.7) for the system (7.1.1) with known parameters, ie.

__=DEY
= BE R )

where D, F satisfy (7.1.2). In particular, the asymptotic variance of the
output is a*(f2+ f2+ - + f2.)).

PrROOF With the m.v. regulator, y, =g, SO that by Proposition
7.3.2 the output y, is a moving average of order r — 1. Now the closed-
loop system is :

[JA—z""BH]y,=JCw, - - (7.3.16)
S0 it must be the case that
JC ° -
JA—z"BH ~ F
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where F is a polynomial of order r — 1. Thus yi = Fw, and from

(7.3.16) N
~ _,BHF _
F—z 7=

Denoting D = BHF/J this becomes
AF—z""D=C.

But this equality is satisfied by unique polynomials F=F, D=D.
Thus H/J = D/BF and this coincides with the m.v. regulator (7.1.7)
designed for the known system (7.1.1). _ O

C.

Note that this result does not say that the combination of least-
squares estimation and the controller given by (7.3.15) will converge
to the m.v. regulator. It says that if convergence takes place to some
controller such that the closed-loop system is stable, then that
controller must be the m.v. regulator. Some separate argument has to
be employed to show that convergence actually does take place; this
question is discussed in Section 7.4. Nonetheless, Proposition 7.3.4 is
a striking result because it means that one can get away with using
simple least-squares estimation in a context in which one expects that
something more sophisticated would be required. '

Wellstead et al. (1979) recommend use of the detuned m.v. regulator.
This was introduced in Section 7.2.1 above and is a kind of
compromise between m.v. control and regulation by pole shifting,
Everything is the same as before except that the control algorithm
(7.3.15) is replaced by '

H =BI_[— & + T*]
1" (7.3.17)
=—&
4]

where T* is an arbitrary polynomial of degree n+. In this case the self-
tuning result is as follows. '

Proposition 1.3.5

Suppose that the conditions of Proposition 7.3.2 hold and that the
control is given by (7.3.17). Then condition (7.3.10) becomes '

ne<ny— 1— Nope (7318)
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and under this condition the asymptotic closed-loop system is given
by
Fiz™1

= n—z—m‘_—l) Wy (7319)

Vi

where F(z™!)is the same (r — 1)th degree polynomial that appears in
the m.v. regulator.

PROOF Here
L=%(1—-z7"T%

with degree ny + r + nrso that the condition (7.3.10) becomes (7.3.18).
The residuals ¢, are given by

g=(1—z"1Ty,

and ¢, is a moving average of order (r — 1) under the stated conditions.
The closed-loop system is given by (7.3.16), so that

- 1—z7"T*)JC =~
g=(1—z rT*)y":_(’JA——z“_’]%H—W":FW"

where F is a polynomial of degree (r — 1). Rearranging, we see that

C=FA—z""D
where
5="B _rec.
J
As before, F, D must coincide with F, D from the m.v. regulator, and
H D+T*C .
J  BF

From (7.2.1) and (7.3.16), we obtain (7.3.19) as the closed-loop system.

The closed-loop system for detuned m.v. control is an ARMA.
system with the same zeros as the m.v. regulated system but with poles
given by the roots of 1+ {"T*({)=0 instead of all poles being
at infinity, Wellstead et al. (1979) adduce some evidence that the
detuned regulator has better stability properties than the strict m.v.
regulator. However, the scope of ‘detuning’ is severely limited unless
the system has almost white noise, since the condition n¢+ np <
n,— 1 must be satisfied to guarantee the self-tuning property.
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Finally, a note on system order. If m = n,and | = ng +r,i.e. we have
overestimated the order of the true system, then & and % must
contain common factors. For m.v. regulation H = — (1/,)/«/ and

J =(1/B,)® so that H and J have common factors, which violates a .

condition of Proposition 7.3.2. To obtain the self-tuning property, we
must take H/J = — o/ | % cancelling all common factors. In practice
this is not a simple thing to do, since one needs a numerical procedure
to decide on the presence of common factors when & and # are not
given in factored form.

7.3.3 LQG regulators

We now turn to m.v. controllers with control costs, i.e. to LQG
regulators of the sort discussed in Section 7.1. The main result is that
these regulators do not have the self-tuning property except, possibly,
when C(z~!) = 1. Even if they did, they would not constitute a very
practical form of control algorithm because of the necessity of
performing a spectral factorization at every step in order to compute
the required control value. In the known-parameter case this only has
to be done once and the LQG regulator is a viable way of handling
difficulties with m.v. control associated with non-minimum phase
systems, etc. In the self-tuning case, some other way of handling these
difficulties must be found; hence the interest in detuned m.v., pole-
shifting control and other non-optimal algorithms.

The discussion here will be limited to the unit-delay case r = 1 since
only for this case is the solution of the LQG problem given directly for
the predictor model (7.2.2). Similar results may however be expected
when r > 1.

As for m.v. regulation, the self-tuning LQG regulator is designed
for the predictor model on the (possibly erroneous) assumption that
the process noise is white. Now when C(z™') = 1 and r = 1 the system
model (7.1.1) becomes

Az YW=2z"'Bz" Y + w,. (7.3.20)

The coefficients of this and of the predictor model (7.3.2) are therefore
related by :

o = z(1 — A)
#=B.

The putative self-tuning LQG controller is therefore obtained by the
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following procedure:

(@) Estimate the parameters &/ and # of the :predictor model

(7.3.2) by recursive least squares;
(b) Apply the LQG control designed for the system (7.1. 1) with

A=o:=1—z"'o

B=% : (7.321)

C=1.

Since we want the control in transfer function fomiv u, = (H/J)y,itis
convenient to use the frequency-domain solution of the LQG
problem as presented in Section 7.1.3, which gives the control directly
in this form. This solution can be expressed in a more explicit way for
the problem at hand, in which the system is, with parameters given by
(7.3.21) above,

w=z" Bz) u,+ !
= = Zo-n"
g E TP I TP

Thus, in the notation of Section 7.1.3, ¥(z™ ) = 1/.2/(2‘1) and the

- LQG controller is given by

H__-49
J _‘gu —z71%9)
where ‘
-y FEBE) & L 20
o = ) TG
(7.3.22)
and

Nz YN(z) = B(z~1)B(2) + A (z~ 1) (2).

(we take K(z~*) = 1, which means that control energy is being costed

directly).

We can express ¢ in more explicit form if we suppose, as is

generically the case, that z—&/(z~ 1) has distinct zeros p;,..., P,
Then there are constants dy,...,d,, such that -

1 d;

Sz Fl—pgz

-1

and the sum in (7.3.22) can be evaluated by the method of residues as -
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follows:

‘ L1 f 1 %0,
0" Znijra?(c—*)N@)c @
2 1 & 40
IVEOZ nlJ‘F(l—pjg 1)N(C)
S _V5JPJ.@(P,) p
1v=0 N(p)
_¢ 3;p;8(p;) 1
& Np) 1-pz!
_AETYH
T AzTY
where A(z™?) is a polynomial of order n, — 1. Thus (7.3.22) becomes
' Az HB(@z™Y

™8

v

:-’.

¢rdf

j

M>.

(7.3.23)

Wy~ 1) =
G(z™) N
and the controller is ,
H_ -8 (7.3.24)
J N-—z'A%
The closed-loop predictor model equation (7.3.2) with this control is
ZNy, = (N -z~ AB)g. : (7.3.25)

Thus L= &N and nL =n, + max(ny, ng), so that condition (7.3.10) is

satisfied only if ng=n, and nc=0.
Let us now see in what way the situation is different in the

minimum-variance, minimum-phase case when 1=0, N=2%. We
know that the m.v. regulator is glven by u, = — (2Z/B)y, s0 it must be

the case that
A=9= A .

(This can, with some difficulty, be checked directly from (7.3. 23) )Thus
 N-z'AB =B

so that here L =J = &. Thus the order of L has been reduced to ny
and this allows scope for self-tuning as described in Proposition 7.3.4.

If ng>n,4, nc =0 and convergence takes place, then we conclude
from (7.3. 20) and (7.3.25) that, asymptotlcally, the residual sequence g,
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and w, are related by
SN &N
= Wg.
J YT UA—zBH) "

Tt follows from Proposition 7.3.2 that &/ N/[JA —z " 'BH] = f, for
some constant fj. i.c. '

JA—z"'BH =(1/f,)&N. (7.3.26)
On the other hand, from (7.3.24) we have

8k=

JA —z"'BH =(1/ny)&N. - (73.27)

If we regard (7.3.26), (7.3.27) as equations for ‘unknowns’ <7, %, then
one solution is certainly &/ = A4, # = B, implying convergence of A, B
to the true parameter values and hence of H/J to the true LQG
controller. We have not, however, succeeded in showing that this is
only possible limit point of H/J. The conclusion is therefore that
the conditions for self-tuning are not met unless the system noise is
white and that even in this case there is some possible ambiguity as
to the convergence point of the algorithm.

7.3.4 Pole-shifting regulators

Following the discussion in Section 7.2, a self-tuning pole-shifting
regulator is determined in the following way. A polynomial T(z™*) of
degree n is selected and the control parameters H, J are related to the
coefficients o7, # of the predictor model (7.3.2) by

L=J1—-z'o)~2z""3H=TP (7.3.28)
where P is a polynomial of degree (r — 1), to be determined:
P ) =1+pyz™t+ - +p_z "N

We thus set the denominator of the closed-loop transfer function of

the predictor model equal to T'P. If T has (maximum) degree ny= .

| + m + 1, then both sides (7.3.28) have degree | + m + r, which is equal
to the number of parameters j,...,ji, Bos--«»Ams P1s-+-»Pr—1. There-
fore (7.3.28) is (in general) satisfied by unique H, J, P for given &/, %, T.
According to Proposition 7.3.2, since n, =ny +r —1 we require

ne<ng+ng+r—1—nc=l+m+1—nc (7.3.29)

for the self-tuning property, which is that g, = (L/Ny, = (TP/J)y,isan
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(r— L)th-order moving average. In this case the behaviour of the

resulting closed-loop system is given by the following proposition. -

Proposition 7.3.6

Suppose the conditions of Proposition 7.3.2 hold (in particular,

(7.3.29) is satisfied). and that the control parameters H,J satisfy
identity (7.3.28). Then the closed-loop system is the ARMA system

Ji -1

* Thus tﬁe-’closed-loop zeros are the poles of the controller and the

closed-loop poles are those of the specified polynomial T(z~ .

PROOF From (7.3.16) we have

L L, _TP _ TPC

KE T T A= BH

Therefore .
TPC N

ey (7.3.30)

where F is a polynomial of degree (r — 1), ice.

FJA—z7"FBH=TPC. (7.3.31)

Under condition (7.3.29) the left and right sides are polynomiafs of

degrees (n, + ny+ 2r — 2), and this is the number of parameters in

" F,H,J. Therefore (7.3.31) is satisfied by unique F, H, J for given A4, B,

T, C, P. Consider, on the other hand, the identity
JA—-z""BH=TC. (7.3.32)

Again, this is satisfied by unique H, J for given 4, B, T, C. But if H,J
satisfy (7.3.32) then P, H,J satisfy (7.3.31), so F = P. From (7.3.30),

JA—-2z""BH=TC

and hence the closed-loop systerh is y, = (J/T)w,, as required. [J

7.4 A self-tuning controller with guaranteed convergence

The results in the previous section give conditions under which the
self-tuning phenomenon can occur, and help us to identify possible
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candidates for self-tuning regulation. However, the results only refer
to asymptotic properties of the closed-loop systems assuming that the
parameter estimates converge; there is no guarantee that they actually
will converge. Until fairly recently it had been a long- standing open
problem in adaptive control to give an algorithm with guaranteed
convergence properties: that is, a controller which when applied to an
‘unknown’ system would under reasonably general conditions give at
Jeast a stable closed-loop system. In the last few years, however, there
has been considerable progress in this area and convergence proofs
have been given for a number of adaptive control algorithms.
Nevetheless, this is still an area of active research which has certainly
not reached its final form. In this section we will discuss the simplest
caseofanalgorithm due to Goodwin, Ramadgeand Caines(1981). This
is closely related, but not identical, to the minimum-variance self-
tuning regulators discussed earlier. The convergence proof of Good-
win, Ramadge and Caines(1981), which we givein Appendix C,wasthe
first general such result given for stochastic systems. -

As before, the system to be controlled is described by the ARMAX
model

Az "y =27"Bz™ Y+ C2™ "y (74.1)

with polynomial degrees n4,ng,nc. A and C are monic, ie. A(0)=
C(0)=1. w, is a sequence of independent random variables with
Ew, =0, var(w,) = ¢2. A property of w, which will be useful later is
this; we know by the strong law of large numbers that with
probability one, < ‘

1 X
N &

It follows in particular that, with probability one, for any realization
of the process the sequence w7 is bounded, i.e.

Wi|<K foralN (7.4.2)

where K may depend on the realization. :
A non-random reference signal y¥ is given and this is supposed to
be bounded

wii= wi—se?  asn— .

ly¥| <M for all k.

The objective of the controller is to ‘track’ yj. The algorithm we will
describe applies only to the unit delay case r = 1. (Other algorithms
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for r> 1 are described in Goodwin et al. 1981). As in self-turning m.v.
regulation, the idea is to estimate the control parameters directly
rather than identifying the system and then calculating the appropri-
ate control. The algorithm is as follows.

Algorithm 7.4.1 (Unit delay algorithm)
Let m* = max(ny, np, nc). For k=m* 41 define

¢;:r—1 = [yk—la vee aykan+ LU—1502> uk‘-—naa - y;:—h' eey -‘ylf—n‘c]'
0, is an n*-vector of control parameter estimates, where n* =
n,+ ng+ nc — 1, which is generated recursively together with control
values u, by: . o
‘ a .
5 0.=0, 1 +—p-1 I —i-10i-1] k=m*+1 (74.32)

Te-1
T Y ‘ (7.4.3b)
$10c= 1. ; (1439
The initial estimate . is an arbitrary constant, as are the first m*

control values u,,...,U, @ is a constant whose value is fixed in
Theorem 7.4.2 below. Note that (7.4.3c) specifies u, recursively, since

written out explicitly it states

1

1 _ .
U= “?FTA[G}J’V" AT Y+ O
k : :

nqatng-—1 — ok — fAQnatnpyk cee
+6; Ugeng+1 — Vi+1 gt Vi —

__Anatmetnc—1 %
0% .Vk—-nc+1]'

The recursion formulae (7.4.3a) and (7.4.3b) belong to a class of
algorithms known as stochastic approximation algorithms. They are
clearly related to recursive least-squares estimators, but have no
direct statistical interpretation since, for example, an arbitrary
parameter d is involved. Note that (7.4.3) is computationally ex-
tremely simple to implement since r, is a scalar sequence (in recursive
least-squares (7.4.3b) is replaced by a matrix equation). The choice of
control (7.4.3c) is analogous to the m.v. controller for output tracking
given in Section 7.1.1 above for the known-parameter. case. This was
shown to be given by o '

BFu, = Cy¥,,— Dy,. (7.4.4)
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‘With unit delay r =1 we have F(z"!)=1 and D(z™!)= z(C(z hH—
A(z™1)). We can write (7.4.4) in the form

bk 00 = Yisrs ' (7.4.5)
* where ¢, is as before and 6, contains the parameters of B, C, D. With

this control the output y, is equal to y# + w, and var(y,) = o2 Denot- _

ing by Py 3 the best predictor of y, give the past up to (k— 1), we
know that o2 is also equal to the prediction error E[y, — yk,k l]
The adaptive controllér (7.4.3) simply uses the ‘estimate’ 0, in
place of the true parameter 8,. Under certain conditions, stated in
‘Theorem 7.4.2 below, this algorithm has a performance which is
“asymptotically equivalent to that of the m.v. controller (7.4.4).
One of the conditions of Theorem 7.4.2 is a so-called positive-real
condition. A polynomial (or transfer function) P(z™!) is said to be
(strictly) positive real if there is some number 6 > 0 such that

Re{P(e*®)}=26>0  forall jo| <. (7.4.6)

In the first-order case this is equivalent to stability, since if P(z™!) =
1+ pz~! then Re{P(¢’)} =1 + pcosw, so that P is positive real if
and only if |p| < 1. In general, positive realness is a stronger condition
than stability: by the Nyquist criterion, a positive real polynomial
has stable zeros, but on the other hand, a polynomial with stable zeros

need not be positive real. Consider for example the second-order case

P(z ~1)—(1 +piz71)(1 + pyz™1); then
Re{P(e"®)} = 1'+ (py + pz)cos w + p,pzcos 2w.

If we take p,=—08, p,=—07, then at w=mn/4 we have
Re{P(e)} = 1 — 1.5/,/2 <0 so that (7.4.6) is violated.

The property of positive real polynomials that we need is the so-
called positive real lemma, Lemma C.3 of Appendix C. Some further
comments will be found there.

We denote by %, the collection of random variables {y;, ¥+ Vi
Wos -« +» Woer}; thus for any random variable R with finite expectatlon
E[R|¥,J=E[R|y1s..., Yis Wos-+» Wps]. Note from (7.4.3) that u, is a
nonlinear function of y,,..., y, so that if the noise w, is normal the
output y, will not in general be normal. However, it is clear from (7.4.1)
that the conditional distribution of y, given %, _, is normal, and in
general, whatever the distribution of w, the best predictor f, ;=
E[yi|%¥,_,] is a linear function of {y;,u;,j=k—1,k—2,...} and
{Wos..-,Wps}. Indeed, in the unit delay case the system model can be
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© written v
Ve—wi=(1— Ay, + 2z Bu, +(C—w,.  (14.7)
Now if the ‘initial conditions’ {wo, w,+} are known then w; can be

calculated recursively for j > m* given { Yio Ui k = j}. Thus (7.4. 7) takes
the form :
C k=1 k=1 m*
Vo= W= Y ai+ Y B+ Y vw;

, =1 =1 =0
fer some constants a;, B v; Since w, and ¥, _ | are independent, the
nght-@and side of (7.4.7) is equal to E[y,|%,,], and the prediction
error is

W=V — E[il ¥~ 1]

E(y, — E[y|¥- 1])2 =

Since wy, ..., W, are not outputs of the system it might seem more
natural to define @, = {y,,..., yi}. The theorem below is true with this
definition but the calculations become a little more complicated as we
have to take account of the (asymptotxcally negligible) unknown
initial conditions.

Here then is the main result.

with

Theorem 7.4.2

Suppose that the true system is given by (7.4.1) where r=1 and
ny<nY, ng<n$ and nc < n? where ng, nj, n¢ are known constants.
Suppose also that

1 =0

C(z"')—“7

is strictly positive real for some a® > 0. Let the control U be generated
by the unit delay algorithm 7.4.1 with a= a® n,=ny, ny=nd,
nce = n@. Then with probability one,

1

lxgvn_'sgpjv— Z yE < o0 (7.4.8)
1

111;1 sup Z uf < (7.4.9)

e

—~ N AN N

~

~



k\/

S gt i

330 MINIMUM VARIANCE AND SELF-TUNING CONTROL
and . ~
1 X
lim — ¥ E[(y— y§PI1%-1]1=0" (7.4.10)
N-'ooNk=1

The proof of this result is given in Appendix C.

Properties (7.4.8), (7.4.9) constitute a form of stability for the closed-
loop system. They are violated if |y, - co or |u|— o0 as k— oo, but
they do not by themselves imply that |y,| and |u,| are bounded: for
example, the sequence

iz f=2r

satisfies (7.4.8) but is not bounded. Thus occasional large deviations
are allowed.

As regards property (7.4.10), we know that E[(y,— 2|
%, _,]=o® when the system is controlled by the known-parameter
m.v. controller. Thus (7.4.10) states that the unit delay algorithm
asymptotically achieves the best performance that could be obtained
if the system were identified exactly, in the sense that the conditional
variance of y, — y¥ given %, _, asymptotically coincides with that of
the best one-step predictor. (Again, occasional large deviations are
not theoretically excluded.) In Section 7.1.1 a somewhat stronger
result was obtained for the known-parameter case, namely that
E[(y, — ¥})*] = 0? (no conditioning). No similar claim is made here,
but it is in fact possible to show that under stronger hypotheses on the
noise process w, (for example, Ewf <M < 0),(7.4.10) ‘can be replaced
by :

Jm {0 k 2" for some integer n,
=

.1 &
I}'Er:oﬁkzlE(yk —y¥)? =02 (7.4.11)
It will be seen in Appendix C that the convergence property is more
easily established in the form (7.4.10) since we can essentially analyse
the system along a single realization whereas to establish (7.4.11),
‘ensemble’ properties must be investigated. .

As mentioned earlier, Theorem 7.4.2 was the first general result
establishing convergence of a stochastic adaptive control algorithm.
It has been followed by analysis of other algorithms including, for
example, some designed to cover the important case of non-constant
parameters. These results represent a major advance in adapative
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control. Nevertheless, they all suffer from the serious disadvantage
that an upper bound for the order of the system must be known in
advance. In other words, the complexity of the model must be at least
as great as that of the system to be controlled. This is of course
unrealistic since physical systems are complex objects: which are only
approximately represented by low-order ARMAX models. An im-
portant and satisfying feature of the prediction error formulation of
(off-line) system identification, as presented in Chapters 4 and 5, is

that the possibility that the true system may not be contained in the

model set is explicitly allowed for. So far no formulation of adaptive
control with analogous features has been given. What is involved is a
careful analysis of the ‘robustness’ properties (stability margins, etc.)
of algorithms such as the unit delay algorithm presented here. Such
questions are the subject of current research.

That the conditions required by theory are not generally met in
practice does not mean that adaptive control ideas cannot ‘be
successfully used in applications. The last few years have seen, in
parallel with theoretical developments, a greatly enhanced under-
standing of the practical issues involved in the. implementation of
adaptive controllers. A state-of-the-art discussion of these issues will
be found in the survey papers of Astrom (1983) and Wittenmark and
Astrom (1984). Two key problems are the following: ,

(a) Persistent excitation This concept was introduced in Defi-
nition 5.3.5 and is an essential condition for consistency results such
as Theorem 5.3.7, where the system input is supposed to contain an
exogenous persistently exciting component. If the input is generated
entirely by feedback, as in many adaptive control schemes, it is
difficult to guarantee that it will be persistently exciting. The
important thing is that updating of parameter estimates should be
carried out only when there is sufficient excitation in the input signal.
A variety of detection procedures have been devised which can be
incorporated in the control loop to ensure this.

(b) Unmodelled high- frequency dynamics Typically, a low-order .
model is designed to capture only the dominant modes of a system,
and it is well-known that standard ‘classical’ control system design
techniques are rather insensitive to the elementary ‘model reduction’
procedure of simply ignoring system poles which are close to the
origin. In adaptive control, one possible source of instability is-
excitation of the system at frequencies at which the unmodelled
dynamics play some significant role. If one has some a prioriidea as to
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what the dominant modes of a system are, such instabilities can be
eliminated by introducing a low-pass filter into the control loop.
Adaptive controlisin a state of rapid development, and has already
advanced to the point where controllers based on the self-tuning
- principle (and incorporating the sort of safeguards mentioned above)
are commercially available. On the theoretical side, guaranteed
stabilization under progressively more realistic conditions is being
demonstrated; on the practical side, the mechanisms of instability are
much better understood. Perhaps a grand synthesis is not too far
around the corner.

Notes

The literature on adaptive and self-tuning control is voluminous. The
survey article by Astrom (1983) gives an up-to-date overview and a
lengthy list of references. For a general introduction see Harris and
Billings (1981); this book contains several articles discussing both
basic theory and practical issues. Landau (1981) describes Model
Reference Adaptlve Control, a somewhat different approach to that
discussed here.
Section 7.1 Minimum-variance controllers appear in Astrom’s book
(1970) and were also derived by Box and Jenkins (1962). The relation
between m.v. regulators and LQG control has been discussed by
several authors, for example Caines (1972). The frequency-domain
approach to control of stationary processes is treated thoroughly by
Whittle (1963). Another recent reference is Youla, Bongiorno and
Jabre (1976). We follow Burt and Rigby (1982).
Section 7.2 Pole/zero shifting regulators were introduced in this
context by Wellstead and co-workers (1979a, b); see also Astrém and
Wittenmark (1980) and Wellstead and Prager’s article in Harris and
Billings (1981).
Section 7.3 The self-tuning regulator is due to Astrém and Witten-
mark (1973). The self-tuning' argument we give in Section 7.3.2
essentially follows Wellstead et al. (1979b), as does the discussion of
pole-shifting regulators. Other non-optimal algorithms, designed to
introduce control costs and to have the self-tuning property, have
been given by Clarke and Gawthrop (1979).

" Section 7.4 This section is taken from Goodwin, Ramadge and
Caines (1981). As mentioned in the text, this is an area of active
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research and the results have already been extended in various ways;
see for example Chen and Caines (1983) and Sin and Goodwin (1982).
Stochastic approximation algorithms and the positive real condition
are discussed at length in Kushner and Clarke (1978) and Ljung

(1977). All of these matters are discussed in the recent book of -

Goodwin and Sin (1984).
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APPENDIX A

A uniform convergence theorem and
proof of Theorem 5.2.1

Consider an identification experiment in the framework of Section 5.1
in which the data is generated by a stable system, the models supply
uniformly stable predictors and the identification criterion is quadra-
tically bounded. )

The definitions of ‘stability’, ‘uniform stability’ and ‘quadratic
boundedness’ (see Definitions 5.1.1, 5.1.3 and 5.1.5) each refer to an-
open neighbourhood of the parameter constraint set D. We assume
that the conditions of the definitions are satisfied for some common
neighbourhood 2 of D (this can always be arranged by choosing 2 to
be intersection of the three neighbourhoods).

Let dy, N =1,2,..., be a collection of matrix-valued functions all
defined on a subset & of R? and let F be a subset of #. The functions
are said to be equicontinuous on F if, given any é > 0, there existse >0
such that [ dy(s) — dy(s')]| <6 for N=1,2,... and for all s, s’eD such
that ||s —§'|| < &. (Any matrix norm may be used; see Appendix D.2.)
The functions are said to be uniformly bounded on F if there exists
a constant ¢ such that |dy()| <c, for N=1,2,... and for all seD.

We shall first build up through several steps a result we refer to as
the ‘uniform convergence theorem’. This concerns the relationship
between the random variable

N
0x0: ") = 3. WO.56)

and its expected value in the limit as N — co, and the equicontinuity
and uniform boundedness of the functions EQy(6;y",u"™?),
N=1,2,.... Theorem 5.2.1 will follow as a simple consequence.

It is convenient initially to prove the uniform convergence theorem -
in the special case when the functions J(6, ¢), k=1,2,..., are scalar
valued. In this case our proof hinges on application of the ergodic
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theorem(Theorem1.1.15)toa se'quence ofrandom variables {1, } of the
form:

Mmm=g%mammh k=1,2,...° (A1)

Here B,(0) denotes the ball {6: || § — 8] < «} in R?, & is an appropriate
element in D and o is some positive number such that B(f) c 2.

The following lemma collects together a number of properties of
i, 8) and [,(6, £,(0)) which will be required.

Lemma A.l

* Suppose that [,(6, ) is scalar valued for k=1,2,... and let ﬁk(a, f) be
defined by (A.1). Then there exist 1€(0, 1) and ¢ > 0 such that, for any
GeD and a which satisfies B,(f) = 2 we have:

(@) cov{ne, O)no )} < ca*7, for all k and j such that k = j;
(b) Enfe,0) — El(8,6(0)<ca, for all 8eB,(8) and for all k;
(©) END,efd)) <c,. for all k; and,

(dy “ L@, ak(o))“« for'all k.

prROOF Fix feD and let o be such that B,(8)e2. For convenience
we write 1, for n,(c, ).

In what follows numbers 4, 4, in the interval (0, 1) and positive
numbers ¢, c,,... are introduced; it is understood that they do not
depend on & or 0.

Let k, j be positive numbers such that k =j and define

Yf = (J’k,j,}’k'—l.j'»---,Yj+1,j’o’— ..»0)
and :
uj = (u,w-,uk_l'j,...,uj+1.j,0,.'..,0).

In these eXpressions Yy js...,¥j+ 1.k, js-+->Uj+1,; are the random
variables associated with the stability of the system (see Definition
5.1.1).
Now define
sk.j(e)=yk1 ﬁc(g yk lau_l;- )
We bégin by establishing the following bounds:

Esup |ig(0)||*<c;, forallk, . (A2)
(]

| by the generalized Hélder inequality (see Appendix E
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Esuple 0)|*<c,, forall k,j with k >}, (A3) -
. .

Esup |lef0) — & (O |* < ci A, for all k,j with k=) (A.4)
0 T

and

4

0
E sup 558"(0)

In each case, the supremum is taken over &'s in Ba(G')
Consider (A 2) We have

S‘;p lew&)11* = sup Iy = A0y~ L=

= sup [y = £i0:0.0) = 0147 0) + £B:00)1

: v o
< Sl;p(llykll + 1/d8;0,0)[| +c, .Zl Al + N )

since the predictors are uniformly stable (see Definition 5.1.3),

k 4
< c3|:1 + ( X ATl + Ilu.-ll)> ]

since the system is stable and since {a + b]* < 8(|a|* + |b|*),

k 3k -
Fl +<Z i’i"‘) 2 ATyl + D))
B i=0 i=0 i

<c

w

' g
>

[ ¢ k 3k .
=c 1!+<.ZO)~'§—') .Zol’;-‘(,”yi”‘t'""ui”‘t) -

Taking expectations and noting that, since the system is stable, -

" Ellyill* Ellug*,i=0,1,... are uniformly bounded, we obtain

k 4
Esup |lg@)|* < c4|:1 + < 3 l’{") ] <cg.
L] . i=
The proofs of (A.3) and (A.5) are along similar lines to that of (A.2).
In the case of (A.3), we note that ¢, (6)is obtained from the formula for
£d0) = yi — ful6; ¥* 1, uF 1), by substitution of y, ;in place of y,, u ;in
place of u,, etc. So the earlier arguments hold good again, provided
that the substituted random variables are appropriately bounded;

<ec,, forall k. (A3)

o~ N~
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specifically, we require »
Elly;ll* +Ellu l*<c,  forall j,i with j=i.

However, we readily deduce this bound from stability of the system

(see Definition 5.1.1).
As for (A.5), we use the fact that

d
20 &(0)

is obtained from the formula for &(8)=y,— fd0;y*~ %, u*™1),
by substitution of 0 in place of y, and 8f,/d0 in place of f;. In view of
the conditions placed upon 8,/06 in the definition of a uniformly
stable predictor, the earlier arguments can be used a further time, to
yield (A.5). K

Finally we consider (A.4). We define y; ; =0, u; ;=0 for i <.

sup lleu(0) — & L) I

=sgpllyk—yk,,-—fg(B;y"“,u"“)+fk(9;y§'*,u’;“‘) I+

k . 4
< Ce(Z)()l';_'(”}’i - yi.j" + ffu; — ui,j"))

since the predictors are uniformly stable

k 3/ &
< C9<.Zo l’f_'> (';o ATELy— yi,j“4 + Elju;— ui.j"4))'

by the generalized Holder inequality and since Ela+b|*<
8(Ellall* + EYbII?).

Taking expectations and noting that E||y, — y; ;I* + Ellu; — u; | * is
bounded by ¢,,457 for i >j and by ¢, for i< j, we obtain

i ; k .
Bogpla0 - O <] A7+ 5, 4]

i=j+1

A R ’ .
Sc“l"”(_zol’f'+(k--—j)>_<.c12/l"‘1

“for any Ae(4,, 1) and for some appropriately chosen number ¢, . We

have proved (A.4).
We are now ready to prove claims (a),...,(d) of the lemma.
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(a) Define
€k, = SUp 1(8; &,46))-
In view of the properties of the random variables y% and uf used
in the construction of g ;6), it is not difficult to see that

&.{(6) and ¢f6) are independent for arbitrary 6. It follows that e, ;
and 7; are independent, so that by Schwarz’s inequality

cov {1 ’71} =cov{n, — ey — 11(9; 0)}
<(Elm— ek.jlz)llz(Elnj - 1(0’; 0)12)1/2- (A.6)

We now bound the terms in the product (A.6). Application of the
mean value theorem yields

In;— LG O = Isup {1(6; ¢/6)) — 146;0)}1?

2 .

J 0
s%p{%l,(() -0+ %1181(9)}

inwhich 8l/80 and dl/0c areevaluated at((1 — 6)8 + 66, ¢(0)),forsome
cel0,1], A

2
5013<S‘;p Ilsj(ﬁ)llz>

(since the identification criterion is quadratically bounded (see
Definition 5.1.5))

=¢138Up [l¢{6) 1%,
Taking expectations, we conclude now froin (A.2) that
Eln;~ [0 S ¢y (A7)
Examine next #, —e¢, ;. We have
M= €,y < 5up {14(0; 8(6)) = kB 0. (6))}

- S%P{a%lk(@; 924(0) + (1 — e 40))(ed6) — sk;,l(e)')}

for some g &[0, 1] (which is a function possibly of §) by the mean value -
theorem, :

< cyssup {1 + lew 4O a6) — 2 (O]}
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(we have used again quadratic boundedness). Likewise, we use the
mean value theorem to show that

e — e,” = mf{lk(G ak((?)) — 16600}
2 - clssl;p{( lex@) 1l + llew, (6) 1) 1e«(6) — &x, AO) 11}
It follows that
e — ex 1 < c16SuP{(lle O + le(O) ) lle(0) — &, (0) 117}
<ciesup{(lec Ol + leO)l )} sup{ le(6) — & (O) 3
Taking expectations and applying Schwarz’s inequality yields

E|n,— ek.j|2
< Cxe[ES‘;p( lee AB) 1| + llen(6) 11172

‘[Esuplied?) — &.(6) 141t

7

< C17[E51;p e (O I1* + Eslép llex(6) 1*]1/2

‘[E sup le(6) — &, £6) 1472
Scygttd
by (A.2), (A.3) and (A.4). This inequality together with inequalities

(A.6) and (A.7) establishes (a).
(b) For arbitrary 6eB(0)

M — (0 &(0)) = S%P{lk(e’; (8) — 1(0: 246)))

(the sup, as usual, is taken over Ba(U)),

=S}){P{< 10" 840") + 5 l;‘(e" 075 sk(0”)>(9’ - 0)}

by the mean value theorem (0” is a point in B,(f) which depends,

possibly, on '),
o I
'6_081:(9)"]

<cion [sx;,p [©) I + sup 166" sup
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by the quadratic boundedness of the identification criterion

1

&(0)

_ ' d
<cgox| sup llel@))1* +sup | =
¢ o || 00

Taking expectations and applying Schwarz’s inequality, we obtain

— EL(0;6(0)) < c0a [(E sup len@)114)H

4\ 1/2
+<Esb1’p % ) :|

0 6®)

<cj 0
by (A.2) and (A.5).
(c) We have

|lk(9— (@) =1(0;0) + lk(g Uﬁk(o))sk(g)

by the mean value theorem, for some o€[0,1],

<eg[1 + a@11%]

since the identification criterion is quadratically bounded. Now take
expectations. There results

E|1(8; &(8))] < c32[1 + E|l&(@)11]
< cy,[1+ (Elle@)I19)*] < c23

by (A.2). This is the required inequality.
(d) Note that

o o, o o 0 o
|2 10000 | =i + 5000 )

<ca ( )12 + D)1 “é%*"‘@ ")

)

(we have used the property that the identification criterion is

1

<35 ("sk(g M2+ l

quadratically bofjnded). Taking expectations and applying Schwarz’s
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inequality, we obtain: :

a ' ‘ 4\ 172
E %Ik(g; &) < Czs((E ”31«(0) 1442 + <E “6—608,‘(9) ) ) '
<€
by (A.2) and (A.5). The proof is complete. O

Next we note a simple criterion for equicontinuity.

Lemma A.2

Let F be a compact subset of R? and let & be an open subset of R?
which contains F. Let dy, N =1,2,...be a family of continuously
differentiable, scalar-valued functions on & and suppose that there
exists a constant ¢ such that ' ' ‘

o ,
%dN(O)igc, 0eF,N=12,... (A.8)

Then the functions dy, N = 1,2,...are equicontinuous on F.

PROOF Proof is by contradiction. Suppose that the functions
dy, N =1,2,...are not equicontinuous on F. This means that there
exists an increasing sequence of positive integers {N;}, sequences
{6;} and {6;} in F and &> 0 such that B

0,—0;-0 as i—o

and
ldn(6) —du @) >e  i=12,... (A9)
Since F is compact, we can extract subsequences with the propeity tﬁat
0;,-0,6,-8. j- oo, . (A10)

for some BeF. B lies in the open set %. An open ball B can be
chosen therefore, with centre & and which is contained in #. We
now choose an integer J such that 6, , 8; lie in B for j = J. The line
segment s; which joins 6, and 6; liesin Bfor j 2 J (this follows from the
convexity of B). We deduce from the mean value theorem that

.0
dNij(eiJ') - le'j(el.j) = .a_ng.‘j(a-j)(gij - 6;‘_;)’ j Z J,' (A.l 1)

~ for some es;.
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Properties (A.8), (A.10) and (A.1 1) imply that ‘
dN‘J(G'U) - dN'j(eij) '—>0 as j—) 0.

This contradicts (A.9). The functions dy, N =1,2,... must therefore
be equicontinuous. o _ O

We are now ready to prove the uniform convergence theorem.

Theorem A.3
(a) The random variables Qu(0;y",u""1),0eD,N=1,2,... have the
property .
Ox(O: YV, u¥™ 1) — EQu(6;y", 4" 1) ~0  as. N>

uniformly in €D, almost surely; and,
(b) The functions 8 — EQ(6; y¥,uM "1y are uniformly bounded and

equicontinuous on D.

prOOF We consider first of all the case when the I,(-, *) are scalar
valued. :

(a) Let ¢ be an arbitrary positive number. Part (2) of the theorem
can be restated: there exists a number N(w), which depends on the
sample point w and which is almost surely finite, such that

N
sup —]1\7 Y. (16, &(6)) — EL{6, g(0)| <e (A.12)
8eD k=1 ’
whenever N > N(w). It is convenient to prove it in this form.

Let B,(9) be an open ball (with centre g, radius @) in 2. We draw
from the ergodic theorem, Theorem 1.1.15, and from Lemma A.l
which tells (among other things) us that the functions n(& 0), k=
1,2,... satisfy the hypotheses of the ergodic theorem, the following
conclusions: given &> 0, there exists a positive integer N(,0,¢ )
which depends on the ball B,(8), £and the sample point o and which is
almost surely finite, such that '

N .
% Y, (14 0) — En(&,0)| <& - (A13)
k=1 .

whenever N > N(&, 8, & w). Here, we recall,
(& 8) = sup L(6;&(0))-

0eBa(0)
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Notice that

SUp Z (16 64(6)) — EL(6;,(6)))
oca) IV &=

Z (1@, 6) — inf EL(6; £(6)))

9eBu(D)

2!~ 2

lle

(ﬂk(a 9) — Eny(& 8)) + ca

by Lemma A.1,
Ze+cd (A.14)

provided N > N(&, 7, & @) by (A.13). Here c is positive number which
does not depend on & or 8.
‘Now the set of open balls

F= {B,,(G):O < <28—c, 9eD, B,(6) = .@}

covers D. It follows from the compactness of D that there exists a finite
collection of balls in & such that

Dc o B, (6)).
i=1

We have from (A.14) that

1 ¥ :
sup {N kZ1 ((1(6; £(0)) — EL(6; Sk(e)))}
0eD -
< su =
9eu,BI:z(l,){ } 'n},a:.’f.n OGS;I (I‘)h){ }
8

e ) A
5+5.= | (A.15)

whenever N > N,(w). Here

Exactly the same arguments apply when — [ replaces I It follows that
thereexistsa positiveinteger N ,(w), which depends on the sample point
and which is almost surely finite, such that

. 1 N .
mf{ 3 2 (6O~ EKGa @ | > —5 - (A19

0eD
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whenever N > N,(). Inéqualities (A.15)and (A.16)imply (A.12) when

- N(w) is taken to be max {N,(w), N,(w)}.

(b) For N = If’, 2,..., the function dy, with domain 92, is defined to
be ;

N : ’ - .
4O = 3, EU6: 00 (A.17)

We must show that the dy are uniformly bounded and equicon-

tinuous on D.
Uniform boundedness follows from Lemma A.1. Bearing in mind

that D is a compact subset of 9, we can deduce from Lemma A.2 that
the functions dy, N = 1,2,... are equicontinuous on D provided we
can show that they are contmuously dlfferentxable on 2 and that the
derivatives

are uniformly bounded on 2.
However, in view of the smoothness of the f, and I,

the function 8- 1,(6;¢,(0)) is continuously differentiable for |
given samples y*,u*~* of the input and output, k=1,2,...
(A.18)

By Lemma Al,

l—lk(H g@)|<c, forall e, k=1,2,... (A.19)

for some positive number c.
" It is known that (A.18) and (A.19) imply that the following
interchange of the expectation and differentiation operators is valid:

0 0
Eéglk(G; sk(O))b=égElk(G;sk(G)),f)e@, k=1,2,...

and that these expressions depend cohtinuously on 6. Recalling the
definition (A.17) of dy, we see that the functions dy, N = 1,2,... are
continuously differentiable on 9, and the derivatives

]

-5édN’ N=1,2,...,

~ are uniformly bounded on £. It follows that thc dy are equicon-

tinuous on D.

o~ o~
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The theorem has been proved in the special case when the [,(-,*) are
scalar valued. However, it is not difficult to see that, by applying the
special case of the theorem when I, is replaced by an arbitrary
component of I, we can deduce that the assertions of the theorem are
true in general. O

Proof of Theorem 5.2.1

We shall write Qy(6; yV,u¥ 1) briefly as Qn(6).
Suppose that

On(0) — EQN(B)—0 as N — oo uniformly over 8eD. (A.20)

By Theorem A.3, this event has probability 1.

The functions 6 = EQy(6), N = 1,2,... are uniformly bounded and
equicontinuous on D, by Theorem A.3. The function 4 is continuous
and therefore uniformly continuous on some open ball which

contains the point EQx(6) for N =1,2,... and for all- feD; in view of

(A.20) this ball also contains Q () for all e D and for all N sufficiently
large. We deduce from these properties, and (A.20), that

the functions 6 —h(EQN(6)), N =1,2,... are (A21)
uniformly bounded and equicontinuous on D '
and
hQNB)) — HEQNB)—0 as N — oo uniformly over 8eD.

(A.22)

Now let {6y,} be an arbitrary convergent subsequence of {fy}. Let
§=1imy,, and let Y be an arbitrary element in D. The theorem will

be proved if we can show that
li;g igf {MEQMD)) — WEQNW)} <0 . (A23)

since the maximum over ¥.of the left-hand side of this inequality is
obviously non-negative. But '

lm inf {HEQ(9)) — HEQy(Y)} < lim inf {WEQu ) — HEQy¥))}

1= o0

= lim inf {h(EQy(@.))

1= o0

~ WEQNW))}
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by (A.21) and since 8y, — 8, _
= lim inf {h(Q,(O)) — HQn YD)}
i—+c0

by (A.22)
' <0

since fy, minimizes the identification criterion 8 — h(Qy,(0)). Inequ-
ality (A.23) is proved.



APPENDIX B

The algebraic Riccati equation

The purpose of this appendix is to establish various properties of the
algebraic Riccati equation (ARE), as required for application to the
Kalman filter and the linear/quadratic control problem. We shali
consider the ARE in its ‘control’ form since the proofs are based on
control rather than filtering ideas. The corresponding results for the
‘filtering’ form of the ARE are obtained by using the duality
relationships given in Section 6.1.

Let A, B, D, F be matrices of dimensions respectively n x n, n x m,
p x n, p x m,where p = m. We suppose throughout that FTF is strictly
positive definite, i.e. there exists 6 > 0 such that

uTFTFu 2 6)ju|?

for all ueR™ Then FTF is non-singular. We denote -

@ =(F'F)~!
A=A—-BOFD
D=[I—-FOFT]D.

In addition, we sometimes write ||x[|3 for the quadratic form x"Qx
when x is a vector and Q is non-negative definite matrix.

The equations in question are:
The discrete-time Riccati equation

S(k)y = ATS(I_c + 1)4 + D™D — (A"S(k + 1)B + DF)
“(B™S(k + 1)B + FTF)~(B"S(k + 1)A + F™D). ~ (B.1)
This generates matrices S(N — 1), S(N —2),... from a given terminal
condition S(N) = S,. It follows from Theorems 6.1.1 and 6.1.2 that

if S, is symmetric and non-negative definite then the same is true of
S(k) for all k< N. '

348
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T'he algebraic Riccati equation
{S =A"SA+ D™D — (ATSB + DTF)(B"SB + FTF)"}(B"SA + FTD)

S=57,5=0. (B2)

The results are as follows.

Theorem B.1

Suppose that (4, B) is stabilizable and that S(—1), S(—2),... is
the sequence of matrices defined by (B.1) with S(0)=0. Then as
i—» —00,8()—S where S is a non-negative definitive symmetric

matrix satisfying (B.2). Now suppose also that (D, A) is detectable.

Then (4 — BK) is stable, where
’ ' K =(B"SB+ F'F)~(B'SA + F'D) (B.3)
1

and S is the of:nly non-negative definite solution of B.2. Further,
S(i)— S as i— — oo, where S(i) is the sequence defined by (B.1) with
S(0) an arbitrary non-negative definite symmetric matrix.

Theorem B.2

For each xeR", define

n(x) = inf{ Y. |Dx, + Fukllz}
K=o

* where the infimum is taken over all sequences {x;,u,} satisfying

x0=x

b Xg4+1 = Axk + Buk k = 0, 1, cea (B-4)

Suppose that (4, B) is stabilizable and (D, A) is detectable. Let S be the
solution to (B.2) and let K be given by (B.3).

Then
n(x) = x"Sx

and u, = — Kx, is optimal in that
QO
xTSx= Y DX, + Fi*
k=0 .

Where {ik, ﬂk} Satisfy (B.4) With ﬁk = - K.)-C-k.
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These two theorems summarize the results of the sequence of
lemmas stated and proved below.

Lemma B.3

Take integers M, N with N > M. Suppose S(M), S(M + 1),...,S(N)
satisfy (B.1) and that {x,,u,, M <k <N} are sequences satisfying
(B.4). Suppose also that S(N) = ST(N), S(N) > 0. Then

N-1
Y. IDx, + Fu?
KM

N-1 ' .
= X3 S(M)xps — Xy S(N)xy + Y. (BTS(k + 1)B + F"Fu,
KSh -

+ (B"S(k + 1)A + FTD)x, | s+ 1y8+ Frry~1-

prOOF Using (B.4) we have
XES(N)xy — x 3 S(M)x

N~-1
= kZM(xL 1 Stk + D41 — x5 S(R)x,)

N-1
= M((Axk + Bu)"S(k + 1)(Ax, + Bu) — xi S(k)xy).

1

Thus

N-1
kZM [ Dxy + Fuy||? + xyS(N)xy — X3 S(M)x

N-1 '
= k;M {(xIDT + uf F*)(Dx; + Fuy)

+ (xFAT + uf BNS(k + 1)(Ax; + Buy) — xg S(k)x }.
The kth term in the sum can be written, after some rearrangement,
as
xF[ATS(k + 1)A + D™D — (A"S(k + 1)B + DTF)
-(B"S(k + 1)B + F'F)~}(BTS(k + 1)A + F™D — S(k) 1x;
+ ||(BTS(k + 1)B + FTF)u,
-+ (BTS(k + 1)A + FTD)xyl\fvsqe+ 18+ F7ry-1-
This gives the result in view of (B.l); 0O
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Corollary B.4

Let S, be a symmetric non-negative definite matrix and x an n-vector.
Define S(— 1), S(— 2),... by (B.1) with S(0) = So. Then forj=0,1,...,

jz1 '
: xTS(—j)x=min( Y [Ika+Fukl|2+xJTS(,xj>
k=0

where the minimum is taken over all sequences {X
k=0,1,...,j} satisfying (B.4).

Lemma B.5 .
Suppose that (4, B) is stabilizable and let S(— 1), S(—2),... be defined
by (B.1) with S(0) =0. Then, as k— — o, S(k)— S for some matrix S
satisfying (B.2).

PROOF Since S, =0 it follows from (B.1) that all the S(k) are
symmetric, and it is evident from Corollary B.4 that S(k — 1) = S(k) for
k=0, —1,... It will be shown presently that there exists a constant

- ¢ such that

XTS(k)x < ¢l x]2 (B.5)

for all xeR", k=0,—1,... ,

Thus y,:= xTS(k)x is a sequence of numbers which is increasing
as k— — oo in that y,_; >y, and y,<cllx||? for all k. Any such
sequence converges to a limit; call it ‘a(x). According to Pro-
position D.1.4 in Appendix D this implies that a(x) = x"Sx for some
symmetric non-negative definite'matrix S and that S(k)— S. Taking
the limit as k — — co on both sides of (B.1), we conclude that S satisfies

(B.2). It remains to prove (B.5).
Let L be a matrix such that A'— BL is stable (such a matrix exists

by the stabilizability hypothesis). Take xeR" and define
)Eo =X
)E,-+1=A)E1+Bﬁi, ﬁi='—Lx', i=0,l,...

(
Since (4 — BL) is stable there exist constants ¢, ¢;, not depending
on x, such that

Ms

ID%; + Fitgl)* < cq [lx]?
i=0 o



352 APPENDIX B THE ALGEBRAIC RICCATI EQUATION

and : .
f?SOX‘;S-CZH;XHZ, ;=0s1:

Now apply Lemma B.3 with N =0, x, = X, _ , 4, = ﬁ,‘_' u-This gives

-M-1

XTSM)x = Y |IDX, + Fig||* + %34 So%y

k=0
-M-1

- Z ||(BTS(k+1—-M)B+FTF)ﬂ,‘
k=0

—(B™S(k+1—-M)A+F TD)%, | (2BTS(k+ 1-M)B+FTF)
<(ey +cr) x> » A O

Lemma B.6

Let (D, A) be detectable and suppose that S satisfies (B.2). Then
(A — BK) is stable, where K is given by (B.3).

PROOF Let L be a matrix such that A —LD is stable. Such
a matrix exists by the detectability hypothesis. Let xeR" be
arbitrary. Now apply Lemma B.1 with M =0, S(k)=S, x, =x and
u, = — Kx, (so that x, = (4 — BK)*x). This gives

N-1
xTSx = ||(4 — BK)"x[l5 + kzo (D — FK)x,||*. (B.6)

Denote M = FOFT (this is the projection onto the range of F). Then
(D — FK)x, = (I — M + M)Dx, — FKx,
= Dx, + F(OF™D — K)x,.

The two terms are orthogonal since Dx, is orthogonal to the range
of F. Thus (B.6) becomes

XSx= (A= BRYxI3+ %, (10 1?

+ [ (OF™D — K)x; || Fve). . (BT

Since (a) the left-hand side of (B.7)isindependent of N; (b) the terms on
the right are all positive; and (c) [|u[|? < 6~ *||u||}~r for any ueR™, this
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shows that

kio (1D )12 + |(®F™D — K)x, |) < ky < co (B.3) '

for some constant k, depending on x.
Next, note that, since A =4 — BOF'D,

A—BK = 4+ B(OF™D — K)
=(A - LD)+ B@OF™D — K) + LD.

"The first term. on the right will be denoted A4 and is stable by

hypothesis. In view of this identity, if a sequence z, is generated by
Zo'= X )
2Zxyy = Az + (B(OF™D — K) + LD)z,, (B.9)

then z, = x,. On the other hand, writing down the solution of (B.9) as
a difference equation with x, replacing the last z, gives

k—1.
zy =A%+ Y A*(B(OF'D —K)+ LD)x;.
i=0 .
We therefore have the identity |
k=1 .
- (A= BK)x=4*+ Y A*"(B(®F'D —K)+ LD)(A — BK)'x.
i=0 : i

In view of the properties of matrix norms, this shows that

4, <, + kz_jl Gowih =2+, (B.10)
where 0 |
a=I(A-BKYxl,  G=13%], g;=I14]"
and
b=, ((OF™D — K)xy |1+ | Dy )12
where v ©

¢, =max{|BJ, | L] }.

Now regard the terms in (B.10) as the kth components of

TMatrix norms in this appendix are taken to be the spectral norms.
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(N + 1)-vectors a, 4, I and use the triangle inequality to give

N 1/2 N 1/2 .
(;a2> s(%aﬁ) + 1. (B.11)-

Examining I, we see that | can be written

N
1= gih;

i=1
wherehf = (0,...,0, ho, hy,..., by ;). Since g; > 0 this shows that

N N N-i
i< I_Z,l gillh;ll = 'Zi gi(kzo hf) E

Since Aisstable, g; < c,A'forsome A < 1. Using this together with (B.8)
we see that ‘

I} < ke a1 — AL,

Now

42 < o0

o8

since 4 is stable, and hence from (B.11),
kZd (4 — BK)x || < co. (B.12)

If (A — BK) were not stable, the real symmetric matrix (A—BK)T
(A — BK) would have a real eigenvalue A with A=1. If x is a
corresponding eigenvector then =

x"(AT — KTBTY(A — BK)¥x > ||x||? k=0,1,...
But this contradicts (B.12). Therefore (4 — BK) must be stable. []

Lemma B.7

Suppose that S satisfies (B.2) and (4 — BK) is stable, where K is given
by (B.3). Then § is the unique solution to (B.2) with this property, and
for every xeR", :

xTSx = z ”ng + Fﬁk ” 2 (B.13)
k=0
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where {X,,%,,k=0,1,2,...} are defined by
Xo=X
X4 = A%, + Bit,
i, = — K%,.

PrROOF For every xeR" define
n%(x) = inf{ Y. IDx, + Fukllz} (B.14)
=

where the infimum is taken over sequences {X;, t4} such that the sum
in (B.13) is finite, (B.4) is satisfied, and |x[| —0. (The set of such
sequences is non-empty since it includes {%,, i1, }.) Consider such a
sequence {x,u,}. Application of Lemma B.1 with S(k)=S for all k
and M =0 and passage to the limit as N — o0 yields

0
3 1D+ Fu”

=xTSx + kz [(B¥SB + FTF)u, + (B*SA + F'D)x, | Zrsp 4 Fmy- -
=0

Since S > 0 it follows that (B.13) holds and that 7°(k) = x"Sx. Now
let Q be any other solution to (B.2) for which A — B(BTQB + FTF)~!
(BTQA + F'F) is stable. Bearing in mind that S did not enter the
definition of #° we conclude that xTQx = x"Sx, and hence that § = Q,
since S and Q are symmetric and x is arbitrary. It follows that S is the
unique solution to (B.2) such that 4 — BK is stable.

Lemma B.8

Suppose that (4, B) is stabilizable and (D, 4) is detectable. Let S be the
solution to (B.2). Then given xeR",

xTSX < Z [lei + Fu""z
=0
for every pair of sequences {x;, u;} satisfying (B.4).
proOF The hypotheses imply that (B.2) has a unique non-negative

definite solution S. Define S(— 1), S(— 2),... by (B.1) with S(0) = 0 and
apply Lemma B.3 with N =0, M <0. Since S(M) is non-negative
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definite, we conclude that
-M-1
xTS(M)x < Z | Dx; + Fuy|2.

- Now take thelimit as M — — o0. By Lemma BS, S(M)— 8. The result

follows. a .

Lemma B.9

Suppose that (4, B) is stabilizable and (D, 4) is detectable. Let S, be an
arbitrary symmetric non-negative definite n x n matrix -and let
Q(—1),Q(—2),... bedefined by (B.1) with Q(0) = S,,. Then Q(k) = S as
k— — oo, where S is the solution to (B.2).

PROOF Take xeR" and let S(—1), S(—2),... satisfy (B.1) with
5(0) = 0. By Corollary B4,

xTQ(k)x = xTS(k)x  k=—1,—-2,...

since these are the minimal costs for the k-stage control problems with
terminal cost matrices S, and 0 rcspectlvely By Lemma B.S, S(k)— S,
so that

lim inf xTQ(k)x = xTSx. - (B.15)
k——c0
On the other hand, again by Corollary B.4, for each j =0
i1
XTQ(=x < Y Dx; + Fu || + x]Sox;
i=0

where {x;,u;,i=0,1,...,j} satisfy (B.4) with u; = — Kx;, since this
stationary control is sub-optimal for the j-stage problem. By Lemma
B.6,x] Sy x;—0asj— co. By Lemma B.7, the sum converges to xSx. It
follows that

lim sup xTQ(j)x < xSx (B.16)

j= =

Now (B.15) and (B.16) imply that xTQ(j)x —xTSx as j— — oo for
arbitrary x. In view of Proposition D.1.4, Appendix D, thls implies
that Q(j)— S. O

APPENDIX C:

Prdof of Theorem 7.4.2

In this appendix we provide a proof of Theorem 7.4.2, showing that
when an ARMAX system is controlled by the Unit Delay Algorithm
7.4.1, performance is ‘asymptotically optimal’ under the stated
conditions. All notation is that of Section 7.4. We start by making
the following definitions:

=J’k—y;f=)’k_.¢2—1gk-1
Sy 1'—‘3 —wi=EW| ¥ 11— y¥
1= — 40,

0, =0, — 0.

Note that all these processes are adapted to %, in that at each
time k they are functions of the output and initial conditions
{Vis--esVio Wos---sWps} (in the case of s, recall that y¥., is
deterministic). The ‘true system’ equation in predictor form (7.1.3)
is :

where

Clz™YYea1 — Vis1) = [BE™ Dy + D(z™ Yy — Clz™ " yie 4]
+ Clz" Ywipy.
This can be expressed as
Clz™ ) ex+1 = Wis1) = Dk 00 — Vs

or alternatively as

Clz™ "5k = i 0o — yis1 (C.1)
where 8, is as given by (7.4.4), (7.4.5) but extended to dimension
(S +n3+n2—1) by the addition of zero coefficients. This is
where the degree condition on n,, etc., is required. We shall prove
two lemmas, from the second of which the assertions of the Theorem
follow quickly. The proofs of these lemmas require some technical
results which are collected together at the end of the section.

We write a® = a throughout for convenience.
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Lemma C.I
With probability one, if ry— c0 as N —co then
lim 1 i st=0
Noowlyk=1 ke
prOOF Define
V,=078,.

From (7.4.3a), 0, satisfies
6, =0 +— ¢k 1€k
Pr—1

A little algebra using the fact that y, - E[y|%,_,]=w, shows that

=V- 1_2_bk 15k— 1+2 by— 1wy

Fr—1 L

+ (;—é—) Gi—1Dr- 15— 1 + W),

k=1

Taking the conditional expectation of both sides and using the
properties that E[w,|%,_,]1=0 and that s,., is a function of
%, _,, we obtain »

' a
E[Vi%_1] = Vie1 — zr—_bk—1sk—1
k-1

—2

iy r—157- 1+ ¢k 1 Pr- 10>

k._

From (7.4.3b), ¢f_ ¢y, <r,_, and hence the third term on the
right is, for any p >0, less than or equal to

_2-2_83 *< 2a <d+p>_ pa )s’% o
Tg—1 ! Tr—1 2 Fr-1 ’

Thus
.2a pa
EV|¥ 1<V — hk—13k—x——-513—1
Fe-1 Fe-1
—2 '
+—— Pu—1 Py 107 (C2)
Ti—1 '
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where )
a+
¢ hk=bk— zpsk’

Now using (C.1) and (7.4.3c) we see that
Clz™sy—y = bi-100— yi = bi-100— ¢I—lgk—1 =b-y.
The process h, is therefore the following moving average of s

hk=[ (-1),“'*’%’] k> m*,

Since C(z~!)—1ia is strictly positive real, C(z™!)—%(@+p) is
positive real for some p > 0. Choose such a p and define

S,:=2a z hij_ys;-, +K.
It follows from Lemma C.3 below that there exists K > 0 such that

S, =0 for all k. Now define
1

Zk = Vk+ — '_Sk
Tr—y

Substituting Vk Zy— Si/re—y in (C.2), we ﬁnd that

pa
k1

E[Z|¥_1<2Z;_,— sl%’—1+;2—¢z—1¢k—102-
k.—

Note that

(@) Z,=0 for all k;
(b) The second term on the right is non- posmve
(c) For the third term we havc

z ¢k¢k°’ < .

Part (c) follows from (7.4.3b) since, denoting o, := ¢f @,, we have

rk=rk_1+ak,- k>m*

so that
iﬂ< i O =_§: Te—Ti—y
,,:m.r,f k=m* Vil -1 k=m* Ty
N o1 1 1
= z ——=1--x<1
k=m Ty Ty 'n
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The result follows. In view of (a), (b), (c), the martingale convergence
theorem (Lemma C.4 below) implies that with probability one,

Zk_)Zw

- where Z, is some random variable with Z, 2 0, EZ,, < c0; and that

§E_, < o00.

© pa
kz‘l Fr—1

" The conclusion of the lemma now follows from the Kronecker
Lemma C.5 (which requires r, 1 o). OJ

Lemma C.2
With probability one,
) | x
lim — ¥ s2=0.
N ,‘; k

N—w

proOF First consider a realization of the process such that r,1
r,, <oo. From (7.4.3b) this implies | ¢, [ —0. Since Z,= a1, +
Sy/te-1—Z<ooand Sy/ry-; =0, there exists n, such that || 0.1l <2Z
for k> ny. Now s, is generated by C(z™")s, = by = — $7T0, and C is
stable; thus s, — 0 since |¢58,| -0, and hence

! is2—>0'
N&

For the remainder of the proof we take a realization of the process
such that r, 1 oo, and that (7.4.2) and the conclusion of Lemma C.1
hold. Together with the case considered above, this covers all possible
realizations except a set of probability zero. -

Think of system (7.4.1) as a stable linear system with inputs wy,
y, and output w,. This can be realized in state-space form in the
standard way, and it then follows from the bounded input/bounded
output stability Lemma C.6 that there are constants Ky, K5, No such
that

yi.1+K,  for N>N,.
1

Using the fact that
m* -+ k

P =14 ¢;b;

m
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and the definition of ¢;, this implies that

~

N~ N;
for some constants K, K,. Now
Ve=Yi + Wit s-1. ' (C4)
It follows from (7.4.2) that

. 1 X
limsup— ) wi<oo -
k
N-w ngl .

and hence from (C.4), since |yf¥| is bounded,

ij . <K5i 2+Ks N=N
Nk=1J’k+1—Nk=1§k 6 =¥y

~ for some K, K¢, N,. Combining this with (C.3) we have

~l-r K7§: 241K C
NN—NJ=1sk+ 8: | (C.5)

We can use this relation to show that
1y,
N kz,l Yies1
must be bounded. Indeed, suppose
1 X,
N k;{y“ 1

is not bounded; then

. 1
llgvn_'s;lp Nv= oo

since, by the definition of ry
N
W= 2, Vier-
. k=17
In view of (C.5) this implies that
C N

lim su !
N—vooka=1

st = 0. (C.6)

K, X ‘
VSN L i tKe N> (C3)

e
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Write _
s2 1 & 2
5N=1—v” Zsk 5
then (C.5) states that N/ry > 1/(K,5% + Kg) or that

N Sy
Neao Sy C.7
S ZKn+ Ks €7

From (C.6), there exists a sequence n, <n,<... such that

lim, 52 = oo Thus limk§,%k/(K7§,,k + Kg)=1/K,, and from (C.7)
N 1
liminf —s >—
N— o N K7 o
However, this contradicts Lemma C.1; so it must be the case that

1 ¥
N L Vi
is bounded. Returning to (C.3) this means that
. 1,
llII:l#S:.le N < o
or, equivalently, that
liminf E?_(S >0.
N~w TN

Combining this with Lemma C.1 we conclude that

N

This completes the proof. : 1.

Proof of Theorem 7.4.2

This is almost immediate from Lemma C.2. Indeed, (7.4.8) and (7.4.9)
have already been shown in the proof of Lemma C.2. For (7.4.10),

“denote P, _,:= E[yx|%_]. Then

Yo=Y =D — P + Se-1-
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Now s, is a function of %, _,, so that
E[(y,— .pk|k—l)sk;- -1 =8 E[y— j)kuc-llo-yk— 11=0.
Hence 1 ‘
EL— ¥ 1% I =st-1 + E[(0 — .Vk;k_1)2 ¥ -1]
= S;f_l + 0.2.

Thus using Lemma C.2 we see that

lim — Z ELOi— ¥y -1] =q

N—o N k=

which is the result claimed. » - O

The following lemmas are used in the proof.

Lemma C.3 (Positive real lemma)

Suppose
Gz V)=1+gyz7 '+ +g,z77"
is positive real, i.e. Re{ G(e""’)} >0for0<w=< 2n Suppose doubly
infinite sequences {h,,s,} satisfy ‘
h,=G(z Y)s, fork=m*>=p.

Then there exists a constant K such that, for all N = m*,

N
Y s+ K=0.
k=0 y

REMARK Positive realness is a kind of ‘passivity’ condition. If one
thinks of G as a transfer function relating (sampled) current b, and
voltage s, in a network then Th,s, is the energy dissipation and this is,
apart from initial conditions, positive, corresponding to a passive
network. The result is true if G is a rational function (rather than a
polynomial) but the proof is then somewhat more complicated.

PrOOF Fix N = m* and suppose, without loss of generality, that
h,=s,=0 for k<0 and s, =0 for k> N. Define

k=~

H(w)= Z he"“’" S(w) = i 5,8 iok
) k=—w
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(these are ﬁnite"sums) By the generalized Parseval equality,
— f S*(co)H (w)dw = Z SEh,. (C.8)
k=0

Let h, be given by
he=G(z"Y)s,, for all k.
Thus k, = h, for k >m*, and
T Fee o = A(w) = Gle™*)S(w),
k=—w .

so that
H(w) = Gle™*)S(w) + R(w)
where '

mi-1 .
R(w) = kzo (hk —_ Ek)e_l“)k.
Now s, and h, are real, so (C.8) becomes

N 1 2n " 1 2n '
kzo Sy = Re{ o JO S*(w)G(e")S(w)dw + > JO S *(w)R(a))dcu}

2z
= Re—l— J S*(w)R(w)dw
2n J o

(invoking the positive real condition). This last expression is equal to -

m*—1
Z s(hy ~ Ek)

k=0

and is independent of N. This completes the proof.

Lemma C.4 (Martingale convergence theorem)

Let X, Y1, Yz, .- be a sequence of random variables and denote %, =

{X0sY15---sYi}. A sequence of random variables {T,} is adapted

to %, if, for each k= 1, T, = g,(xo, V1. .., Vi) for some function g,.
Let {T.}, {a}, {B} be sequences of non-negative random
variables adapted to %, such that
E[Tl;lm'/k—l] STy — %y + iy
If

o0
Z By < 0
k=1
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with probability 1, then, also with probability 1, T} converges toaﬁmte ‘

random variable T and

00
Y o<
k=1

PROOF Wecannot givea self-contained proof of this result here. See
Neveu (1975) or Goodwin et al. (1981) listed in the references to
Chapter 7.

Lemma C.5 (Kronecker lemma)

Let s, {xn;b,,, n=1,2,...} be real numbers such that 0 < b,1 o0 and
Sp41i= 3, Xy—S as n—»co.
k=1 . .
Then

hm — }: bkxk—O

n—'oo

PROOF Define by:=0 and a,:=b, — b,_,. Then
1 & 1 &
E;kgl byx, = (sp41—5)— E;kz:l as — 3).

Thus it suffices to show that the second term on the right convergesto 0
asn— oo.Foranye > Othere exists n,such that|s, — s| < efork > n,, so
that for n>n,

n

1

1 & & 1
by W9 S| L ads =9+ S alsi—s)
1 &
< Ekg ak(sk—s) + &

The result follows on letting n1 oo, )0 (in that order).

Lemma C.6 (Bounded input/bounded output stability)

Let &, u, be respectively the m-vector input and scalar output of the
stable linear system

Xi+y = Ax, + BE,
U, = chk -+ dTék.

S~

SN N N ~~ o N

N N NN

— N —



NN N

—

3
)
.‘>

—

366 APPENDIX C PROOF OF THEOREM 742

Then there exist constants ¢,,c, independent of N such that
N N S
Youi<e, Y 1G> +c,.
k=1 k=0
prooF The output is given explicitly by

k
U, = CTAkxO dTék + Z TAjBék J

. Let || 4]l denote the spectral norm || A4 || = max,_,|4x|. Since A is

stable, thereexists 4,0 < A < 1,and K < cosuch that || 47| < KA%. Thus

.”uk"2S3|:"c”2“Ak"2“x0”2+ Idi? IIEkII2

k 2
+( 3 emamsiie ) |

k 2
<K 2%+ Kzllﬁkll’+K3<Z1 ljllék-,-ll> .
=
Using the Schwarz inequality we have
‘ k A . 2 C Kk . k . Co-
(Z MR ék-,-ll> <Y MY Pl&-;I?
i=1 =1 =t
and hence
Z luwll? <Kq+ K, Z 1&ll* +Ks Z Z 7y = ,Ilz

On introducing the variables | = k — j and interchanging the order of
summation, the last term becomes

N N
KeY, » A&I%<

1=0k=1+1

I12.

The proof is complete. ’ |

- APPENDIX D

Some properties of matrices

In thisappendix we collect together various facts about matrices which
areusedin thisbook. There arefour sections. Thefirst covers propertles
of symmetric non-negative definite matrices. In the second, various
matrix norms and the relations between them are discussed. The third
section is devoted to establishing a uniform bound on | A¥|l for stable
matrices A; this is needed in connection with the analysis of
identification algorithms in Chapter 5. In the final section, some
identities of matrix calculus are presented.

D.1 Symmetric non-negative definite matrices

Symmetric non-negative definite matrices play an important role in

this book. This section establishes their main properties.
Throughout, we consider only matrices with real (as opposed to

complex) entries. First some definitions: an n x n matrix A is

symmetric if AT = A4

non-negative definite if xTAx > 0 for all xeR"
positive definite if xTAx >0 for all xeR", x #0;
orthogonal if ATA=1I (the n x n identity matrix).

From the definition, an orthogonal matrix 4 is non-singular and
A" 1= AT,
Lemma D.1.1

A real symmetrxc matrix has real eigenvalues. With every eigenvalue
can be associated a real eigenvector, and the (real) elgcnvectors

. corresponding to distinct elgenvalucs are orthogonal.

prooF Inthefollowing, an overbar denotes complex conjugate and
a star denotes complex conjugate transpose. Suppose that 4, x are
respectively an eigenvalue and an eigenvector of a real symmetric

367
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matrix A4, so that

Ax=Ax and x #0. , (D.1) |

Then
x*Ax = Ax*x.

The left-hand side of this equality is, however, real in view of the
symmetry, since

x*Ax = xTAX = x*Ax.
Thus 4 is equal to the real qﬁantity x*Ax/x*x. If x = x; + ix, then
Ax, +>iAx2 = Axy +idx,

so that both x, and x, are real eigenvectors corresponding to 4; at least
one must be non-zero. If u is another eigenvalue, u+# A, with
real eigenvector y, then

Ay=npy. (D.2)

Premultiplying (D.1) and (D.2) by y™ and xT respectively and
subtracting, we see that /
(A—wxTy=0

and hence that x L y since A — p# 0. This completes the proof. [

Suppose A is a symmetric matrix with distinct eigenvalues 4,,..., 4,.
Then the eigenvectors u,,..., u, are mutually orthogonal and hence
form a basis of R". We suppose the u; are normalized: ufu; = 1. Let
U be the n x n matrix with columns u;,...,u, We then have

Utu=1 (D.3)

. CAU=UA - (D.4)

where A is the diagonal matrix with diagonal entries A,,...,4,.
Thus U is orthogonal, and, premultiplying (D.4) by U™ we see that
UTAU = A, ie. A can be diagonalized by means of the orthogonal

matrix U. It is important that a similar result holds even when the
eigenvalues are not distinct.

Proposition D.1.2

Let A be a symmetric matrix with eigenvalues 4,,...,4, (not
necessarily distinct) and form the diagonal matrix A as above.
Then there exists an orthogonal matrix U such that UTAU = A.
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proOF The proof is by induction on the order n. Suppose the
result holds for n=k — 1 and let 4 be a k x k matrix and 4, x be an
eigenvalue/eigenvector pair. Let P be the orthogonal matrix which
rotates x so as to align with the first coordinate vector e, i.e. such
that

Px=le, (D.5)
where | = ||x|. Now Ax = Ax so that
- PAx = Pix,

or
PAPY(Px) = A(Px).

In view of (D.5) this shows that
PAPTe, = Je,.

Now the left-hand side is just the first column of PAPT, so that
PAPT takes the form

A ib].
T | Lo
PAP —[0 : B]

However, PAPT is symmetric, so b = 0. By the induction hypothesis,
B can be written B=VTMV where M is diagonal and V is a

(k— 1) x (k — 1) orthogonal matrix. Thus A = UTAU, where

A 0 1 L0
a=[5bar) oe e a2

Since U is orthogonal, this establishes the result for n = k. The result
is trivially true when n=1, so that the induction argument is
complete. : O

Non-negative definite symmetric matrices have non-negative
eigenvalues since if 4 is such a matrix and 4,x an eigenvalue/

_eigenvector pair, then

0<xTdx = Ax"x.

In view of the representation A= UTAU it is evident that the rank
deficiency of A is equal to the number of zero eigenvalues and that
A is positive definite if and only if all its eigenvalues are strictly
greater than zero. The following results on the existence of ‘square
root’ matrices are used in several places in the book.
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Proposition D.1.3 ‘
Let A be a symmetric non-negative definite matnx

(a) If A has rank k, there exists an n x k matrix B such that 4 = BBT
(b) If A is positive definite, i.e. has rank n, then there exists a positive
definite symmetric matrix A'/2 such that 4 =(4'/?)%

PROOF Write A = UTAU and suppose, without loss of generality,
that A takes the form

R o)

1O "0
Now let C be the the n x k matrix

| 432 O

o e

L o |

and define B=UTC. Then A=BB". If k=n we can define

AY2=yTCU. This is symmetric and pos1t1ve definite, and
(AM2)? = UTAU = A. . O

Finally, we need a result on convergence of sequences of symmetric

non-negative definite matrices.

. Proposition D.1.4

Let P(k), k=1,2,... be a sequence of n x n symmetric non-negative
definite matrices and suppose that for each xeR" the scalar

APPENDIX D SOME PROPERTIES 'OF MATRICES n

sequence x" P(k)x converges to some number a(x). Then there exists
a non- negatlve definite symmetric matrix P such that «(x)= xTPx.

PROOF Let ¢; be the unit vector in the ith coordinate direction of
R" and define ;

P;=ale) = ’}im el P(k)e;.

Now note the identity
(e; + ej)TP(k)(e,- -+ ej) =€; P(k)e, + eTP(k)ej + 26 P(k)ej
where we have used the symmetry of P(k). Taking the limit as k— oo
of this identity shows that '
eT P(k)e;~ b(ofe, + e) — afe) —afe))),  k—oo.
Denote this limit P;; and let P be the symmetric matrix with i, ]th
entry P;;.
Then for arbxtrary X,

x= 21: X

" we have,
hm xTP(k)x = lim R el P(k)e;
k=i, j= ’
= x,-ijij = x"Px.
=1 E
Thus xTPx > 0 since xTP(k)x >0 for all k, so that P is non-negative

definite. . : O

D.2 Matrix norms

Consider first of all the space of n-vectors (over the real or complex
field). A. real-valued function on the space is called a norm, and is
written |- |, if it possesses the following properties:

(2 ||l =0 and | x|l =0if and only if x =0;
(b) Jlax| =|«| [|x]| for all scalars &

(@ lx+yl < lx] + Iyl

These axiomatize the notion of ‘length’ of a vector. (If the field is
complex, || here indicates the modulus and, if real, the absolute
value).
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An important’ exémple is -

” 1/2 v
Ixl = (z |x,~|2)

* where the x; are the components of x. This is the Euclidean norm.
Others are

n
Ixll= 3 Ixi
. i=1
and
I %1 = max|xJ.
i
We can define a norm also on the space on n x m matrices. This is a

function, again written ||-||, which satisfies axioms analogous to (a)-
(c) above, namely:

(@) || 4] 20 with equality if and only if 4 is the zero matrix;
(b lleA|| =lo| [| 4]l for all scalars «;
©) A+ B[ <Al +B].

There are many possible choices of matrix norm. The Euclidean
(matrix) norm of a matrix is simply the Euclidean norm of the vector

7

assembled from the entries of the matrix. It is a useful fact that this .

norm can be expressed as
IA|* =trace{A*A} (or trace{AA4*}).

(Here A* denotes the ‘simple’ transpose or complex conjugate
transpose of A, depending on whether the field is real or complex).
Other possible choices are

4= 3 la
(where the a;; are the entries of 4) or
Al = max lat;jl.

A particularly important class of norms are those whlch take the
form

14|l = max | Ax], (D.6)

lxl=1
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tae definition of which depends, of course, on our choice of norms on
the domain and range spaces of A. These are called induced matrix
norms (‘induced’ by our choice of norms on the domain and range

spaces). The reason for their importance is that, if a norm is defined

according to (D.6) then the norm satisfies the inequality

IABI <[ Al-lBJ. D7) .

(Of course it is assumed here that the same norm is adopted for the
range of B and the domain space of A4 for the purposes of defining the
induced norms ||A| and | B||). We frequently need to bound the
magnitude of the product of several matrices; noting inequality (D.7)
we see that, if induced norms are used, a bound is provided simply by
the product of the norms of the matrices involved.

An induced matrix norm which crops up particularly frequently is
that which results from the choice of the Euclidean norm on both the
domain and range spaces. It is named the spectral norm. It can be
shown that, if | - || is the spectral norm, then for any matrix 4 we have
that || A || is the maximum eigenvalue (the eigenvalues will all be real)
of the matrix 4A4*, or equivalently of the matrix A*A. It is the
relationship of the spectral norm A with the eigenvalues (‘spectrum’,
as the set of eigenvalues is called) of the associated matrix A*A which
gives rise to the terminology ‘spectral norm’.

All the norms considered in this book are defined on matrices of
arbitrary dimension and satisfy (in addition to the norm axioms) the

condition

4] = 4*|

for arbitrary A. :

There is a sense in which all matrix norms are equivalent: if || - || and
[l-I" are two norms on the space of n x m matrices, it can be shown
that there exist:real numbers cq{n, m) and c,(n, m) such that

|4l <con,m)f A’
and
Al <cy(nm)l Al

for any matrix Al This means that we can pass from bounds (above or
below) on one matrix norm to another by simple scaling. This device
is extremely useful when we require a bound with respect to one

" particular norm, but calculations are much more easily carried out

~ A~ ~
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with some other norm. Often in analysis we do not need the actual
numerical values of cy(n,m) and ¢,(n, m), but merely the fact of their
existence; for example, the inequalities imply that if members of a set
of norm matrices are uniformly bounded in magnitude (above or
below) with respect to one matrix norm then they will be uniformly
bounded with respect to any other matrix norm.

We utter a word of caution here, though. We can expect matrix
norms to be equivalent only if we limit attention to matrices of fixed
dimension. Indeed, if the members of a set of matrices, not of fixed
dimension, are uniformly bounded with respect to one matrix norm, it
does not necessarily follow that the same is true when we substitute
another matrix norm.

Often in this book it will not matter what ch01ce of norm or matnx

-norm is made. The reader should assume, for concreteness, that the

vector norm is the Euclidean norm and the matrix norm is the
spectral norm unless explicitly told to the contrary. This convention is

consistent since for a vector, interpreted as a matrix with one column,

the Euclidean and spectral norms coincide.

D.3 A uniform bound for stable matrices and applications

It is a well-known property of (real) n x n matrices A, which are
‘stable’ in the sense that all the eigenvalues lie in the open unit disc,
that the numbers [|4*||, k=1,2,..., decay exponentially. (Here, and
for the rest of this appendix ||| denotes the spectral norm). This
property has the important implication for linear dynamical systems
that a solution {x,} to the dynamical system equations.

Xpi1=Ax, k=0,1,... (D.8)

(for x, a given n-vector) has exponential decay.

With applications to system identification in mind, we now
consider a family of n x n matrices, in place of a single matrix. We
give conditions under which the exponential decay i is uniform over
the family.

Proposition D.3.1

Let 2 be a compact subset. of n x n matrices. Suppose that there
exists £€(0,1) such that, for each matrix AeZ the eigenvalues of
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A are contained in the disc {seC:|s|<1—g}. Then, corres-
ponding to any 4> 1 —¢, there exists c> 0 such that

|4¥| <cik  for all Ae®, and k=0, 1,..

prROOF The proof is in several steps.
Let 1 and A be numbers such that

1—eg<i<i<l.

Step 1 Take A to be a fixed element in 2. We shall show that
there exists a number ¢, (which depends on A) such that

| A% < c A%, k= L,2,... (D.9)
Jordan decomposition of the matrix A4 gives
A=M"'M.

Here Misa (possibly complex) non-singularn x n matrlx The matrix
J can be partitioned as follows:
’ Jy o}
J2

1O Ja |

Here, each J, is a square matrix (of dimension n;) which takes the
form

(1, 1 ]
o)
A1
Jy= '
C1
Lo A

for A; some eigenvalue of A.
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Powers of 4 can be expresséd in terms of J as follows
AA=M"1UMM YUM.. .M~ UUM=M"*J*M
J¥ '
=M"! - M.
: @)
J§
It follows from properties of matrix norms that there exists a number
¢; >0 such that
4% <e¢, max |[Jfl, k=0,1,... (D.10)

ie{1,2,..d}

Next we note that, for i= i,2,...,d, J; =A/L-I + §;, where

01 O

1
! 0. |
Observe that S¥ = 0 for k = n,. We deduce that there exists a number
¢, > 0 (which does not depend on i) such that
1S4 < c (A — 1 +g)f, k=0,1,... (D.11)

Using the binomial expansion, we calculate, for i=1,...,4d,

k .
IIEI = 1(A:d + S)k|l = ‘ Y. cudiSETH,
1=0

where ¢, = ki/(k — Il
k
< Y. a1~

.
<e Y el d—1+¢f!
150

by (D.11)
=c)(JA + 1 -1 +¢)f
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(we have appealed once again to the binomial expansion)
’ <Y, i=1,2,...,d,k=0,1,...

in view of our assumptlons on the eigenvalues of A. It follows from
(D.10) that (D.9) is true with ¢, = c;c,.
Step 2 Let A be a fixed element in 2. We shall show that

144 < c 2t
for all 4 in an open ball about A of radius A— 1 (‘ball’ here
is understood in the sense of the induced norm).
Suppose that B is an n x n matrix such that |B|| < A— A. Then

k k
120 cuA'BH < I_ZO eull AN 1B

(4 + BY| =}

k .
S CA Z CH‘II(}. - I)k—l
1=0
by (D.‘9) (once again the c,, are the ‘binomial’ coefficients), A
=CAlk, k=1,2,...

This is the required inequality..
Conclusion of the proof The collection of sets {4:[4—A| <

A—1}, Ae2, forms an open covering of 2. Since 2 is compact

there is a finite subcovering; in other words there exist matrices
Ay,..., A, in 2 such that

p -~ —~
Pc ) {A:Ad-4l <ri-1}.
i=1
We set ¢ = maxc,,. Given any AeZ, A will lie in the set
{A:)|A— Al <A—1} for some value of i.

By the results of step 2,

A <c 2k k=1,2,...
< ik, k=1,2,...

The proposition is proved. O

Given the close relationship between state-space system descrip-
tions and descriptions expressed in terms of matrices of rational

NN TN N s
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functions in the delay operator (see Section 2.3 of Chapter 2), one
would expect Proposition D.3.1, which concerns the state-space
equation (D.8), to find a counterpart governing rational functions.
Obtaining such a result is the goal of the rest of this appendix. To
this end we prove a preliminary lemma. ‘

Lemma D.3.2
Let 2 = R? be a compact set. Consider the polynomial in o:
Po(o) =1+ o;(B)a + -+ + o, (O)0"

whose coefficients «,(6),...,a{(0) are continuous (real-valued)
functions of the parameter 6 on 2. Suppose that for each 8e2, all
the zeros of o—pyo) lie in the set {6eC:|g|>r,} for some

‘fixed ro > 1. Then corresponding to any number 4 > rg ! there exists

a number ¢ such that the coefficients d(6), k = 1,2,... in the formal
expansion

[po(0)] ™ =1+ d () + dy(B)o? + -+
satisfy
ld(0) <ct,  forall 0eD, k=1,2,...

prooF We note the following identity: for arbitrary 6,.

[pe(0)] ™! =hT[I -0 A(0)1 b (D.12)
.in which
i ‘ —a,(0)] 0]
1 O -
F6) = o : b=|" KT =10,...,0,1].
. — a,(6)
| © 1 —oy(0)] 1]

To see this we have merely to observe that [py(z™1)] =1 s the transfer
function of the system described by

Pz W=t | (D.13)
and hT[I —z71A(6)]" b is that of the system described by
‘ X1 = AO)x;, + bty g
Y= h"x,. , (D.14)
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The responses of the two systems (D.13) and (D.14) are the same for
zero initial conditions (ie. y,=0, k<0 and x,=0) and arbitrary
inputs {u,}. This can be deduced from Proposition 2.4.2. It follows
that the transfer functions are the same, which amounts to (D.12).

Expanding the right-hand side of (D.12) about o =0, we obtain

o)1 = 3, duO)e*

in which

d(0)=hTAO)b, k=0,1,...
It follows that
4 (0)] < 4]l 161 1A (D.15)
Now the characteristic polynomial of A(6) is 5" + o, (8)s" ™" + - +
a,(6). Bearing in mind that py(c) cannot vanish at o = 0, we deduce
that & is a zero of o— py(o) if 60 and ¢~ is an eigenvalue of
A(6). Tt follows from our assumptions about the zeros of pe(o) that
the eigenvalues of A(f) are contained in {seC:|s|<rg 1. Note
also that {A(0):0e9} is a compact set of nxn matrices since

9 is compact and A(6) depends continuously on 6.
Take a real number 4> rg . By Proposition D.3.1 there exists a

number ¢, such that :
1A%O)] <c A%, k=0,1,...
It follows now from (D.15) that .
|4,0)| <ch¥,  for k=0,1,... and 62

where ¢ = ||h|||blc,. The lemma is proved. : |

Proposition D.3.3

Let 9 =R? be a compact subset. Consider an r x ! matrix of
rational functions T,(0) in ¢ which can be represented

Ty(0) = [94(0)]1 ™ *G(o)
in which
golo) =1 +a,(0)o + - + o, (0)"

and
Gylo) = Qo(0) + Q1(O)a + -+~ + Q,,((?)of'-
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Here «,(0),...,a,(6) are (real-valued) continuous functions of
{on 2) and Qu(0),...,0,(0) are continuous r x ! matrix-valued
functions of 8. We suppose that there exists rq > 1 such that the zeros
~of o6—g40) are contained in {oeC:lo|>r,} for all feD.

Let Hy(0), H,(6),... be the coefficients in the formal expansion
of Ty(o) about o =0:

Ty(0) = Ho(6) + H,(6)o + - (D.16)

Then, corresponding to any A > rg!, there exists ¢ > 0 such that

|H(O) <ci:,  for 62, k=0,1,...
PROOF Fix A>rg . By Lemma D.3.2 there exists ¢, > 0 such that
|d(0)] ¢, A* for e, k=0,1,... (D.17)

where d;(0), d,(0),... are the coefficients in the formal expénsion of
[94(0)]™* about ¢ =0:

[96(0)] ™" =1 +d4(0)o + dy(0)0” + -
Now the H,(0), given by (D.16), are related to the d,(6) by the formula:

min{k,n}

0= ) 4-f00/0) 02, k=0,1,...

It follows now from (D.17) and properties of matrix norms that

IH G} <01< > 10014 ’)
<clk, 092, k=0,1,...
Here the constant ¢ is given by )
c—-ﬁmax,: =Z ||Qj(9)l|:|-

This completes the proof. - O

D.4 Some matrix calculus identities

We collect together in this appendix a number of identities of
importance in identification. Let F(t) be a matrix-valued function of a
scalar parameter ¢ and let m(S) be a scalar-valued function on'a space of

att=">r

APPENDIX D SOME PROPERTIES OF MATRICES 381

matrices S. In what follows we shall interpret -
] 0
% F(z) and S m(S)

as having components -

0.\ 0 0 N 2
(a—t' F(t))ij =E[F(t)]” and <% m(S)>U = s m(S)

Jji
This interpretation is consistent with the convention, adhered to
elsewherein this book, that the gradient of a scalar-valued function ofa
column vector is a row vector.

Lemma DA4.1

Let M(t) and N(t) be continuously differentiable functions of the scalar
parameter t. Suppose that M(t) is p x r matrix valued and N(t)isr x'q
matrix valued. Then

0
;%(M(t)N(t)) -—( M(t)>N(t) + M(t)( N(t)>
prROOF The (i, j)th component of
d
S MON®)
0
EE[M(t) ]u . thk(t)nkj

0
Z(Eft lk(t))nk_[(t) + Zm:k(t ( nk,(t)>
T
0

(5M(t)N(t))] [M(t)< N(t)>] O
Lemma D.4.2

Let F(t) be a continuously differentiable n x n matrix-valued function
ofthescalar parametert. Suppose that F(t)is non-singularat¢ = £. Then

O p-1y=—F- 1(t)( F(z)) ~1(s

I

ot
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PROOF Since F(f) is non-singular and F is continuous, F(t) is non-

singular on some neighbourhood A" of  and we can write

FOF~'(t)=1on 4. (D.18)

Now in consequence of the implicit function theorem, the neighbour-
hood ./ can be so chosen that the function F~!(¢) is continuously
differentiable on /. Differentiating both sides of equation (D.18) we
deduce from Lemma D.4.1 that

<£F” 1(t))F(t) + F’%t)(%F(r)) =0 on A

ot
1t follows that
2 p-ig= - F'l(t)(—a-F(t))F-‘(r) o
ot ot -
catt="1
Lemma D.4.3

Let D be an r x g matrix. Then

0
35 frace {SD}=D  on the space of p x r matrices.

proOOF The (i, jth component of d/dS trace{SD} is

0 0 .
Frm trace{SD} = &;; Sudy = dij. O

Lemma D.4.4

Let § be a non-singular n x n matrix. Then
0
—logdetS=S""
.75 08¢

on a neighbourhood of § in the space of n x n matrices.

PROOF Let 4 be a neighbourhood of § on which det S # 0. Fix a

pair of indices (i, j). By Cramér’s rule,
(detS)I =S AdjS
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(Adjdenotes the adjugate matrix of §). Equating the (j, Nthcomponents
of the matrices in this equation, we obtain

det S = Y s [Adj S1y;-
k
It follows that on A,

o 0 0
— = =(detS) 7! ——detS
[aslogdets] a‘g‘.logdctS (detS)” s, e

ij j
= (det S)"'[Adj S];;-

(We have used the fact that [Adj §];does not depend on s for any k).
O

~ Lemma DA4.5

Let § be a non-singular n x n matrix and let a be an n-vector. Then

:% TS~ la=8"taa"s™?

~on a neighbourhood of § in the space of n X n matrices.

PROOF Let A4 be a neighbourhood of § on which det S # 0. On A
we have, by Lemma D.4.2,

) 1e- ] 0 o- i -
—a'S"la| ==—a'S"'a=a'S"10(@, j)S " 'a
[6S ij  Osj
(here O(, j) denotes the matrix with 1 in the (j, )ith entry and zeros
elsewhere)
=trace{O(i, /)S " *aa’™S"'} -
= 1; [OG, ) ialS™ 'aa™S™ ],

=[S—laaTS_1]i'j. » D



APPENDIX E

Somé inequalities of Holder type

We collect together in this appendix a number of useful inequalities

which centre around the Holder inequality for finite sequences of real _

numbers,

Theorem E.1 (The Hélder inequality)

Let p and g be numbers (possibly infinite) such that 1 < p<o0,1<
q = c0,and 1/p + 1/q = 1. Then for any positive integer n and numbers
0,005,...,0, and ﬂl,ﬂz,...,ﬁn, we have

1 n 1/p[" n 1/q
:;1 Ioc.-ﬁils[ Y, |’a,.|n] [; lﬁil“} _ E.1)

i=1

(when p = oo the relationship 1/p + 1/g = 1 is taken to indicate g = 1

and
n 1/p
[.Zl '“i|pJ

is interpreted as max;|a|).

PROOF The inequality is obviously true ifall the a;, or all the §;, are
zero. Itisobviously truealsointhecases p = 1(wheng = co)and p = oo
(when g = 1). Weneed consider then only the case when the o; are not all
zero, the B; are not all zero, and 1 <p< o0, 1 <g < c0.

The proof hinges on an auxiliary inequality:

M A< Ax + (1= Ay, (E.2)

valid forany numbersx > 0,y 2 0,0 < A < 1. Toshow (E.2) we consider
the function r:[0, c0)— R given by :

)=t*—i, 0<t<oo. (E.3)
Note that the derivative r'(f) (= A(¢*~! — 1)) is positive for .t < 1 and
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negativefor ¢ > 1.1t follows that r achieves its maximum over [0, co) at
t=1, so . o
n<r1), 20
From (E.3),

A<+ 14, t=>0 (E.4)
We are now ready to prove (E.2). Clearly we can limit attention to the
case y # 0 since, otherwise, the inequality is trivial. But if y # 0 the
inequality follows from substitution of ¢ = x/y into (E4).

Next, for i=1,...,n we apply (E.2) when x, y and 4 are taken as
follows:

> Y= : A=l(whence1—l=l>.
p ) q

Thischoice of xand ymakes sense, since by assumption neither all the «;
nor all the f; are zero. There results

0 Lol 1 gl
1/p 1/q p q
Z [ot;1? Z Bl Z ot 1P Z 1B;I*
J J J J
Summing over i, we obtain
Z LA 11
i < 4-=1
1/p =y + q
<Z Iajll’> (Z Iﬂjlq>
J J .
This is the Holder inequality. O

Undoubtedly the most frequently used case of this inequality is that
which results when we take p = g = 2. Here the inequality takes the
form :

1/2 1/2
Shi<( T ) (zm)" €3

This is the Schwarz inequality. An alternative direct proof can be
given along the lines of the proof of the similarly-named inequality in
Proposition 1.1.2. '

We remark that the names ‘Holder’ and ‘Schwarz’ are given to
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mequahtlcs similar in character to (E.1) and (E.5) but when infinite
sequences, functions or random variables replace {o}]~, {Bi}i=1-

The Hélder inequality is the source of a variety of inequalities,
obtained by consideration of special classes of numbers {ay, ..., o)
{By,...,Bn}- One which is particularly useful in stability analysis in the
following.

Corollary E.2

Let p and g be numbers (possibly infinite) such that 1 <p< oo,
1<g<o0 and 1/p+ 1/g=1. Then for any pos1t1ve integer n and
numbers Ay,..., A, Uyse.-s Uy WE have

n n 1/q
ai(Sua) (S mwiwe)” e

IIM:

i

PROOF Apply the Holder inequality witha, = |4|*/7, B, = |2,/ 4y for

i=1,...,n O
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